
~~ (y, illJ_

0
The Terrapin
Logo Language - ~

for the Apple II
ill

UTORIAL
·t~

(

123 45 T S

Congro.tulations!

You have just purchased the new 3.0 Release of the Terrapin
Logo Language for the Apple II family of Computers. Your
Logo Language disk contains both 64K and 128K versions.
The correct version will be loaded depending on the machine
being used. This loading technique is automatic and requires
no special input from the user . In addition, loading time is
significantly less than in earlier versions.

For those using 128K systems, there have been no functional
changes to the Terrapin Logo Language other than the
additional memory now available in your workspace. A few
points worth mentioning before using the new dual version
are as follow s:

* You will notice that garbage collection requires more
time when 128K is being used due to the increased
workspace.

* 128K Logo has approximately three times more
storage space available to the user. The error message
''NO STORAGE LEFT!" will not appear as
frequently, if at all.

* Entering the editor does not affect the contents of
the graphics screen.

* Using the Logo command DRAW does not affect the
contents of the editor.

New Logo Primitive
for Version 3.0: SHOWTEXT

Terrapin has created a new Logo primitive for version 3.0
known as SHOWTEXT. This primitive can be used when
creating text files in Logo and using Logo as a text editor.
Refer to pages A-26 to A-29 in the Appendix and Chapter 7
of the technical manual for further information on creating
text files.

SHOWTEXT Prints the contents of the edit buffer
to the current output device, which
is normally the video screen. Use
OUTDEV to redirect output to a
printer.

NOTE: This new primitive is not documented elsewhere
in the manual.

The Terrapin
Logo Language
for the Apple II

UTORIAL

HTitten by
Virginia Carter Grammer
and
E. Paul Goldenberg

Edited by
Mark Eckenwiler
and
Peter von Mertens

Please fill this out for your records:

Address _______________ _

Telephone (

Logo Language Disk # __________ _

Purchase Date _____________ _

Store Bought _____________ _

Store Telephone Number ________ _

Salesperson _____________ _

Terrapin, Inc. gratefully acknowledges the writing and
editing contributions to this tutorial by

Leigh Klotz, Jr.
J. Sheridan McClees
Nola Sheffer
Patrick G. Sobalvarro
Deborah G. Tatar
Rena Upitis

Designed by Donna Albano and Janet Mumford

Terrapin Logo mascots designed by Virginia Grammer

Copyright© 1982, 1983 Terrapin, Inc.
All Rights Reserved.

IMPORTANT-PLEASE READ

Welcome to Terrapin™ Logo. The Logo language is an exciting way of
entering the world of computers. There are all kinds of fun things to
do-you can create graphics, play word games, make music and learn
how to write fascinating programs.

The items which should be included in this package are listed on page
B-1. If you run into a problem, our customer service department is
always here to help. Our address is: 222 Third Street , Cambridge, MA
02142. You may call us Monday-Friday between 9:00 AM-4:30 PM
EST at: (617) 492-8816. When contacting our customer service
department, always have your language disk serial number
available. However, in the interest of giving Ma Bell and the Post
Office less business, please read these first four pages carefully. They
contain the information most often requested by our users. The third
and fourth pages contain helpful information for printing your Logo
generated graphics.

Backup and Replacement Policy

The Terrapin Logo language disk is copy-protected. Attempts to
duplicate it may result in permanent damage! Company policy allows
you, the owner to purchase one backup disk per Logo package.
However to obtain a backup, you must send in your completed
warranty card along with $15 .00 to Terrapin. An order form is not
necessary- save it for ordering books. Owners of TerraPak 10's and
TerraPak 20's are not eligible for backup Language disks .

Your Utilities disk is copyable. Instructions for copying the disk can
be found on page B-2 in the tutorial.

Outside the 90-day warranty period , replacement disks are available
by returning your damaged disk and $15.00. There will be a higher fee
for an,y major update. Please write your name and address on the disk
label. We suggest all disks be sent via registered mail; we are not
responsible for disks lost in transit to us.

We cannot stress enough the importance of returning your completed
warranty card immediately. This allows us to keep you informed of
upgrades and new Terrapin products. It also registers you for the
90-day warranty period, the terms of which are attached to your
warranty card.

In addition to offering a quality product and superior customer
support, Terrapin also carries a variety of Logo resources to further
enhance your use of the language. Several of these publications are
difficult to find elsewhere. Please examine the Terrapin price list
inserted in the binder's inside pocket. If it is missing, contact us and
we'll be happy to send you another.

Versions of Terrapin Logo

These books are compatible with all versions of Terrapin Logo.
However, please note that these books may not reflect the changes in
our upgraded versions, 2.0 or higher. The version number is printed
out on the screen as part of the Welcome message when you start Logo
or type Goodbye. Versions 1.0 to 1.3 had disk labels with green
lettering on a white background. Version 2.0 has white lettering on a
green background.

Differences in Terrapin Logo Versions

A complete list of the modifications appears in the beginning of the
Technical Manual. The most important change to be aware of is
< CTRL > K has been changed to < CTRL > X. Please remember this
because many books on Terrapin Logo still say that < CTRL > K is used
to delete a line instead of < CTRL > X.

IMPORTANT
PRINTING INFORMATION

The majority of our customers' queries concern printing their Logo
graphics. Please realize that it is difficult for Terrapin to keep current
with all the new printers and various hardware interfaces that are
continually being developed. Your dealer is the best source of
information on different printers and interfaces. Answers to some of
these most common questions are listed below.

QUESTION: How do I print pictures?

ANSWER: 1. If you have an Epson printer (or similar model printer
that receives data from a parallel port) you must have an extra piece of
hardware which is compatible with your printer (e.g. Grappler+ card,
PKASO, etc.) to print pictures directly from Logo. Printing
instructions can be found on pages 16-19 of the Technical Manual
included in your Logo package. If you do not have this extra
hardware, there are instructions on pages 16-19 for printing pictures
from outside of Logo with software only.

2. If you have an Imagewriter or Scribe printer which receives data
serially, the above mentioned interface cards will not work. In order to
print graphics on these printers you must have a software program.
Terrapin has released a new utilities disk- Utilities II- which will
allow you to dump graphics onto your printer while remaining within
Logo.

This feature is only one of 29 new files offered on the Utilities II disk.
Another file gives you the capability of placing text on the graphics
screen. You may obtain the Utilities II disk for $19.95 by either
contacting your dealer or Terrapin. Complete documentation
accompanies this disk.

3. Make sure the OUTDEV command is followed by the number that
corresponds with the slot the printer interface card is in. (Slots in the
Apple II+ start with slot O from left to right-the Apple Ile starts with
slot 1 from left to right.)

4. The HC program on page 18 of the Technical Manual is written for
Orange Micra's Grappler printer interface card. HC can be used for other
printer interfaces if modified slightly. There are too many interfaces
being sold for us to list programs for each. However, changing the
program to work with your printer interface card is relatively easy. The
CHAR 9 and the "G in line two of the program are control characters
that tell the Grappler interface card what to do with the screen image.
The manual for each interface card will have a list of its own control
codes. Use the appropriate control codes for your interface in place of
the CHAR 9 and "G. (CHAR is used in Logo to print ASCII characters.
CHAR 9 actually means < CTRL > I. There is no way to put double
keystroke characters such as <SHIFT> or < CTRL > into a Logo
command without using the ASCII representation. If your interface
card needs something besides < CTRL > I, there is an ASCII translation
table in your Apple Reference Manual.)

QUESTION: I have the Utilities II disk but the Imagewriter will not
print out pictures. What should I do?

ANSWER: Check all the DIP switches. We have found this to be a
common source of people's problems. There are 12 DIP switches on
the Imagewriter and 16 DIP switches on the Apple Super Serial Card.
Check your manuals for the proper dip switch settings.

QUESTION: Why does my Scribe or Imagewriter printer write over
itself when printing out long procedure lines from the editor?

ANSWER: Apple's Super Serial Card has a different default setting
than most interface cards and will not do an automatic line feed when
it gets to the end of a line. To change this, type:

OUTDEV 1
(PRINT1 CHAR 9 "C CHAR 13)
OUTDEV 0

This will change the Serial Card setting so that it does the line feed.
(OUTDEV 1 assumes that the card is in slot 1.)

DISCLAIMER OF ALL WARRANTIES
AND LIABILITY

This software product and the accompanying materials
are sold "AS IS," without warranty as to their perfor­
mance. The entire risk as to the quality and perfor­
mance of the computer software program is assumed
by the user. The user of this product shall be entitled to
use the product for his/her own use, but shall not be
entitled to sell or transfer reproductions of the product
or accompanying materials to other parties in any way.
Terrapin, Inc. reserves the right to make improvements
in the product described in this manual at any time
and without notice. Neither Terrapin, Inc. nor anyone
else who has been involved in the creation and produc­
tion of this product shall be liable for indirect, special
or consequential damages resulting from use of this
product.

COPYRIGHT AND TRADEMARK NOTICES

The Technical Manual and the Logo software are copy­
righted by the Massachusetts Institute of Technology.
The Tutorial and changes to the Technical Manual and
Logo software are copyrighted by Terrapin, Inc.

It is against the law to copy, photocopy, reproduce,
translate, or reduce to any electronic medium or any
other medium, in whole or in part, the software and
documentation included in the Terrapin Logo package,
without prior written consent from Terrapin, Inc.

Copyright, © Massachusetts Institute of Tech­
nology, 1981. Except for the rights and materials
reserved by others, the Publisher and Copyright owner
hereby grant permission without charge to domestic
persons of the United States and Canada for use of this
work and related materials in the United States and
Canada after 1995. For conditions of use and permis­
sion to use materials contained herein or any part

thereof for foreign publications or publication in other
than the English language, apply to the Copyright
owner or publisher. Publication pursuant to any per­
mission shall contain an acknowledgment of this
copyright and an acknowledgment and disclaimer
statement as follows:

This material was prepared with the support of Na­
tional Science Foundation Grant No. SED-7919033.
However, any opinions, findings, conclusions, or
recommendations expressed herein are those of the
authors and do not necessarily reflect the views of the
NSF.

Each school purchasing and putting into use Logo will
make the program object code and accompanying
manuals and teaching guides, if any, available for
inspection by the parents or guardians of the children
who will be using Logo in the school.

Copyright© 1982, 1983 Terrapin, Inc.
222 Third Street
Cambridge, MA 02142
(617) 492-8816

Terrapin hereby grants permission in advance to copy
the computer programs listed in the documentation
and on the utilities disk, for personal and archival
purposes only.

Terrapin expressly reserves all rights including with­
out limitation copyright and trademark, in and to the
Terrapin Logo mascot figures as represented herein, or
from any other perspective.

Terrapin, the Terrapin logo, and the Terrapin mascots
are trademarks of Terrapin, Inc.

Apple and Silentype are registered trademarks of
Apple Computer, Inc.

All references to "Logo" herein refer to the Logo lan­
guage, developed at the Massachusetts Institute of
Technology.

CONTENTS

BEGINNING IN LOGO
Your Terrapin Logo Package B-1
This Tutorial .. B-2

Overview: What Can You Do With Logo? B-3
Graphics . B-4
Computation .. B-5
Words and Lists . B-5
Music .. B-6

Preparing a Blank Disk For Use B-6
Starting Logo . B-8

When Logo Has Started Up B-11
Recovery Process B-12

Using the Keyboard B-13
Upper Case and Lower Case B-15
Starting Logo: Summary B-16

GRAPHICS
Graphics Mode G-1
Driving the Turtle: FORWARD (FD), BACK (BK),

RIGHT (RT), LEFT (LT) G-2
Let Logo Do Your Arithmetic . G-5
An Easy Way to Repeat Yourself: <CTRL> P G-5

The Screen: DRAW, NODRAW (ND), TEXTSCREEN
(<CTRL> T), SPLITSCREEN (<CTRL> S),
FULLSCREEN (<CTRL> F) . G-7

Turtle-driving Projects G-8
Color: PENCOLOR (PC) and BACKGROUND (BG) G-8
The Magic of PENCOLOR 6: Erasing G-11

Introduction to Procedure Writing G-12

Terrapin Logo Tutorial
V

Table of Contents

Primitives vs. Procedures G-12
Naming a Procedure G-13
Writing a Procedure: EDIT Mode: TO, END,

<CTRL> C, <CTRL> G G-14
Running a Procedure G-19

Planning and Drawing Your Favorite Square G-21
Projects: Simple Procedures G-25
What goes Into a Procedure G-25
More Primitives: REPEAT, CLEARSCREEN (CS), HOME,

PENUP (PU), PENDOWN (PD) G-26
Procedure Projects G-28

Saving Procedures: CATALOG, SAVE, POTS G-29
Clearing the Workspace, Reloading Procedures: READ,

ERASE (ER), ERASE ALL (ER ALL), GOODBYE,
ERASEFILE . G-3 2

Selective Uses of SAVE, PO, ERASE (ER), and EDIT (ED) .. G-34
Saving, Reading and Erasing Pictures: SAVEPICT,

READPICT, ERASEPICT G-35

The Invisible Turtle: HIDETURTLE (HT),
SHOWTURTLE (ST) G-3 7

Summary of Logo Commands Used So Far G-38
More About the Editor: <CTRL> P, <CTRL> N,

<CTRL> 0, <CTRL> A, <CTRL> E, <CTRL> D,
<CTRL> X, <CTRL> Y G-40

Summary of Editing Commands G-41

Projects Using Shapes G-42
Listing a Procedure: PRINTOUT (PO),

PO ALL, <CTRL> W G-43
Summary of Listing Commands G-44
Heading: A Matter of State G-44
Copying a Procedure G-46

vi Terrapin Logo Tutorial

Table of Contents

A Magic Number G-46
Projects: More Shapes G-48

Introduction to Variables: Procedures That Take Inputs ... G-48
Projects: Sizable Shapes G-53
From SQUARE to POLY G-53
Projects: Regular Polygons G-55
Another View of POLY G-55

Circles ... G-57
Projects:Curves G-57
Using Subprocedures G-58

Non-stop Procedures: Introduction to Recursion G-61
Projects: Simple Recursion G-62
Recursion: Changing the Input, WRAP, NOWRAP G-62
Projects: Changing Inputs G-65

Stopping With Style: IF-THEN, STOP G-66
Projects: Testing and Stopping G-69
Using the Full Power of Recursion G-69
Recursion Projects G-73

Special Effects and New Utilities G-74
RANDOM Numbers, Numbers from Arithmetic

Operations, Inputs, Outputs G-76
Projects Using Random G-78

Debugging by Printing Values: PRINT (PR) G-79
Debugging Using PAUSE: <CTRL> Z, CONTINUE (CO) .. G-81
Negative Inputs G-81
More on Debugging: TRACE, NOTRACE G-83

More About the Turtle: TURTLESTATE (TS), HEADING,
SETHEADING (SETH), TOWARDS G-83

Terrapin Logo Tutorial
vii

Table of Contents

Position When You Want It: XCOR, YCOR,
SETX, SETY, SETXY . G-85

INSTANT: Logo Turtle Graphics for the Non-reader G-87
Modifying INSTANT G-91

COMPUTATION: HANDLING NUMBERS
Arithmetic Operations C-1
Hierarchy of Operations C-2
Outputs, Integer Operators, Functions: RANDOM,

RANDOMIZE, ROUND, INTEGER, QUOTIENT,
REMAINDER, SQRT, SIN, COS C-4

Variables, Global and Local: MAKE C-6
Procedures: TO, END . C-8
Interactive Procedures: LOCAL, REQUEST (RQ) C-10

Bringing Values Out of Procedures: OUTPUT C-13
Example of OUTPUT and Recursion:

A Procedure to Do Exponentiation C-15
Graphing Functions: Sine, Cosine, Tangent, Parabola,

Ellipse, SETXY, HOME, DRAW, HT C-19

WORDS AND LISTS
INTRODUCTION W-1
Interactive Graphics: READCHARACTER (RC),

TOPLEVEL, STOP W-4
Projects with RC: Extending QUICKDRAW W-8
Changing the Value of a Variable: MAKE, PRINT (PR) W-9
Projects with MAKE: More Extensions to QUICKDRAW .. W-17
Interactive Programs without Waiting: RC? W-18
Projects with RC, RC?: Extensions to LOOP W-22

INTERACTIVE LANGUAGE
Don't Skip This Section: MEMBER?, EMPTY? W-23

Vil!

Terrapin Logo Tutorial

Table of Contents

Some Friendly Introductions: SENTENCE (SE),
REQUEST (RQ), LPUT, FPUT W-25

Interlude: Clearing the Screen with CLEARTEXT W-32
Objects: Producing RESULTs as Output

and Using Them as Input W-33
Writing Procedures that Create and Output Objects :

OUTPUT W-36

Making One Procedure's Output into Another Procedure's
Input: OUTPUT (OP), FIRST, BUTFIRST (BF), LAST,
BUTLAST (BL), SENTENCE (SE), WORD W-43

Subprocedures for Cleaner Programming W-46
A Generalization Using Recursion: ITEM W-48
Projects Using ITEM and Recursion W-51

DEFINITIONS AND MODELS
Some Important Primitives Used in This Chapter W-52
Definitions of Words and Lists: CHAR W-56
Details of Programming in Logo: Variables, Passing

Objects, Logo's Way of Understanding Commands,
and Logo's Messages When It Doesn't Understand ... W-60

How Logo Interprets a Command W-67

Using Logo Predicates and Creating New Ones: LIST?,
WORD?, MEMBER?, and the Structure if IF, THEN,
and ELSE W-70

Projects with Predicates W-74
Ordered Rules W-75
Projects with PLURAL W-79

Quiz Programs: More About REQUEST (RQ) W-81
Projects with REQUEST W-84
Composing Logo Objects: SENTENCE (SE), WORD, LIST,

FPUT, LPUT, TEST, IFTRUE (IFT), IFF ALSE (IFF) W-86

Terrapin Logo Tutorial ix

Table of Contents

An Application of LPUT in Interactive Graphics: RUN W-94
Using the History List: Applying a Command to Each

Element of a List W-96
Projects with History Lists W-99
Substituting One Word for Another in a Sentence:

A Procedure with Two Recursive Calls W-100
Projects with Mad-Libs W-105

Understanding Language: Searching for Key Words and
Matching Sentences to Templates: ALLOF, ANYOF .. W-106

Projects with Language Understanding W-115

MUSIC
Preparation: READ M-1
Duration .. M-2
Pitch ... M-5
Procedures .. M-7
Analyses of the Utilities Disk Music Procedures: STOP,

FIRST, BUTFIRST (BF), THING, WORD, Top Level ... M-11

APPENDIX
ERROR MESSAGES A-1

Part I ... A-1
Part II .. A-5

THE TERRAPIN LOGO UTILITIES DISK A-13

How to Make a Backup Copy of the Utilities Disk A-13
How to Use the Utilities Disk Files A-13

Summary of Utilities Disk Files . A-14
Explanation of Utilities Disk Files A-18

MUSIC, TWINKLE: How to Write and Run Logo Music
Procedures A-18

X Terrapin Logo Tutorial

Table of Contents

MUSIC.BIN, MUSIC.SRC: An example of Logo/Assembler
Interfacing A-18

INSTANT: Single Letter Logo Commands A-19
TEACH: How to Write Logo Procedures

Without Using the Editor. A-19

ARCS: Variable Radii Arc and Circle Procedures A-21
CURSOR: Procedures for Character Output Control:

Position, Flashing, Inverse A-23

How to Print Text Into Disk Files:
Directly and Using DPRINT A-24

TEXTEDIT: How to Save, Read, Examine,
and Print Text Files A-26

FID: File Management Utility: How to Delete, Rename,
Lock, and Unlock files, Set Default File Extension A-29

SCREENDUMP: Printing the Logo Graphics Screen A-29
SHAPE.EDIT: How to Change the Shape of the Turtle A-30

ANIMAL: The Game that Teaches the Computer About
Animals .. A-30

ANIMAL.INSPECTOR: What's in
the ANIMAL Knowledge Base? A-31

DYNATRACK: A Game: the Dynamic Turtle on a
Frictionless Surface A-32

INSPI.PICT: Sample Logo Picture A-33
ROCKET, ROCKET.AUX, ROCKET.SHAPES:

Example of User-Defined Turtle Shape A-33
TET: A Graphics Procedure of Variable Complexity A-34

ADDRESSES, AMODES, ASSEMBLER, OPCODES:
Interfacing Logo and the Assembler A-35

SWEET-P: Plotter Procedures A-35

Terrapin Logo Tutorial xi

Table of Contents

RSPLOTTER: Procedures for the Radio Shack Plotter A-36

EDIT MODE ... A-38

Use of Control Characters for Ease in Editing A-38
Moving the Cursor A-38
Moving the Text A-39
Deleting Text .. A-40
Leaving EDIT Mode A-41

PROCEDURES
GRAPHICS CHAPTER
Turtle Driving Projects A-42
Procedure Projects A-45
Projects Using Shapes A-48
Projects: More Shapes A-62
Projects: Sizable Shapes A-63 (
Projects with Regular Polygons A-65
Projects: Curves A-68
Projects: Simple Recursion A-71
Projects: Changing Inputs A-73
Projects: Testing and Stopping A-77
Recursion Projects A-79
Projects Using Random A-89
Mascots: Elephant, Rabbit, Snail A-92
Procedures for Saving Pictures A-96
Developing an Arc Procedure . A-99
Debugging with TRACE, NOTRACE A-102
Adding Remarks in Your Procedures A-103
Switching Disk Drives: SETDISK A-103
Creating Self-Starting Files

Using the STARTUP Variable A-104

STRATEGIES FOR THE WORDS
AND LISTS PROJECTS A-105

INDEX

xii Terrapin Logo Tutorial

B~GINNING IN LOGO

,·)

~BEGINNING IN LOGO

Your Terrapin Logo Package

NOTE: This section should be read the first time you
use your Logo package. If you have used Terrapin Logo
before, or have a resource person or teacher helping
you, skip to the next section, titled This Tutorial.

In your Terrapin Logo package, you will find:

1 Logo Language disk
1 Utilities Disk containing demonstration and utility

programs
1 Documentation Manual containing

1 Terrapin Logo Tutorial, which you are now read­
ing, and

1 Technical Manual

In order to use Logo, you will also need:

An Apple II+ (or Apple II) with 48K of RAM, and a 16K
memory card such as the Apple Language Card,
Microsoft, MPC, or Davong RamCard

or
An Apple Ile or Ile

or
An Apple-compatible computer
One disk drive, with controller

To save your work, you will need a blank disk.

Before using your Utilities Disk, you should make a
backup copy because it is possible to damage or erase
the Utilities Disk accidentally.

Terrapin Logo Tutorial B-1

Beginning in Logo

B-2

To copy the Utilities Disk, you will need the System
Master disk that came with your disk drive and a
second blank disk. Use the COPYA program on the
DOS 3.3 System Master disk.

It is assumed that your Apple is set up with the disk
controller plugged into slot 6 and the memory card (if
any) in slot 0.

This Tutorial

This tutorial will teach you how to use Logo. The
Technical Manual is a reference document that con­
tains descriptions of Logo primitives with explana­
tions of what they do, and information about assembly
language interfaces for Logo and the internal workings
of Logo. You need not read it to start using Logo, but
you will find it useful when you are ready for new
challenges.

Other books you may wish to read include
MINDSTORMS: Children, Computers, and Powerful
Ideas, by Seymour Papert, LOGO FOR THE APPLE II,
by Harold Abelson, which will help you to continue to
grow in your use of Logo, TURTLE GEOMETRY, by
Harold Abelson and Andrea diSessa, which is await­
ing the day that you think you have done all there is to
do in Logo, and SPECIAL TECHNOLOGY FOR
SPECIAL CHILDREN, by E. Paul Goldenberg, which
discusses uses of the computer in special needs
environments.

Once you are comfortable with your Apple, use this
tutorial to learn the basics of programming in Logo.
Type in the examples and problems. Think about what

Terrapin Logo Tutorial

Beginning in Logo

you are doing; expect to go over some sections more
than once.

Logo puts the user in control from the start. In keeping
with that philosophy, this tutorial will suggest but not
dictate. If you are ever really stuck for an idea, see the
Appendix. It contains examples of all the ideas sug­
gested. In fact, after you try things on your own, look
through the Appendix for new ideas and tips and
tricks.

0 In this tutorial you will meet three Logo mascots, all ..
drawn with Logo. The elephant marks Things to
Remember. The rabbit points out neat tricks, short

0 cuts, and quicker ways of doing things. Go slow and be
~~ careful when you see the snail. It calls attention to

warnings and possible problems. The procedures that
{Ijjy:t draw the mascots are listed in the Appendix.

We have also put some information between light
green bands and shifted them to the right on the page.
It is not necessary to read this information your first
time through the tutorial, but you will find it helpful
when you return and want further explanations of
specific sections.

Overview: What Can You Do with Logo?

Logo is a procedural language. Each procedure is a
group of one or more instructions which the computer
can store for reuse. These instructions can be either
Logo commands or procedure names. When you have
written a procedure to do a task, you can use it in any
other procedure you write, without having to rewrite
its instructions in that procedure, or having to chain to
it, or link it.

Terrapin Logo Tutorial B-3

Beginning in Logo

B-4

You build a system of procedures the way you build
your own knowledge base, new procedures and
knowledge using and building on what is already in
existence. This leads to clearer, more structured think­
ing and programming , in contrast to the development
of one long, complicated procedure (program) which
is common in some other languages.

Logo is what is known as an interpretive language.
Logo commands produce immediate results. Logo can
either execute a command immediately (called IM­
MEDIATE Mode) or you can use commands in proce­
dures which can be stored and used as often as you
want. Changing or correcting (editing) a procedure is
simple in Logo.

If you are familiar with other languages, you will be
delighted with the lack of distinction between system
commands, Logo primitives, and procedures. This is
perhaps the most unusual aspect of Logo, and one of
the most powerful, from the user's standpoint. Any
command you can type to Logo can be used within a
Logo procedure. Logo procedures can even be written
to edit themselves, or other procedures .

You can begin to use all of the different types of
commands immediately. As you advance in your
programming skills, you will gradually discover the
vast possibilities this opens to you.

Graphics

Logo graphics allows you to draw lines and turn in any
direction. With its simple commands you may create
figures and drawings of great complexity. In Logo

Terrapin Logo Tutorial

Beginning in Logo

you do not have the tedious task of figuring point to
point co-ordinates, although Logo can tell you the co­
ordinates at any position.

Graphics is first in this tutorial because you need no
experience to be able to use it. Pre-schoolers, using the
single-letter commands in the INSTANT system, can
do Logo graphics. At the other end of the intellectual
spectrum, Professors Harold Abelson and Andrea di­
Sessa, atM.I.T., use Logo graphics to develop concepts
in higher mathematics and physics in their book Turtle
Geometry: The Computer as a Medium for Exploring
Mathematics.

Computation

In addition to the ordinary mathematical computa­
tions all languages can handle, Logo's built-in ability
to do recursion, which allows a procedure to use itself
as a subprocedure, makes it easy to do computations
not possible in languages such as BASIC and FOR­
TRAN. You will meet recursion in each of the areas of
Logo described in this overview. For a description of
mathematical computation, see the chapter titled
Computation: Handling Numbers.

Words and Lists

Logo's facility with words and lists makes it ideal for
writing conversational programs, quizzes, pig-Latin
translators, programs that teach, and even programs
that learn: in short, all programs that need to manipu­
late lists of information.

Terrapin Logo Tutorial B-5

Beginning in Logo

B-6

Logo's unique list-processing capabilities give you
power over words which is impossible to match in
non-list-processing languages such as BASIC, FOR­
TRAN, and Pascal. See the chapter titled Words and
Lists for what Logo can do and what you can do with it.

Music

Using only the Apple, Logo makes it easy for you to
write tunes and pieces of tunes, or play games with
pitch, time, and sequencing of phrases. On a more
advanced level, you can define your own scales, still
working with Logo primitives. See the chapter titled
Music for details.

Preparing a Blank Disk for Use

NOTE: It is possible to run Logo without a disk in the
disk drive, but you would not be able to save your
work. We encourage you to prepare a blank disk for
storing the procedures you will be writing.

A blank disk, unlike an audio cassette tape, must be
prepared before it can store information. This process
is called initializing (or formatting) the disk.

You can use your Logo Utilities Disk briefly to ini­
tialize a blank disk.

To initialize a disk on the Apple:

1. Place the Logo Utilities disk in the disk drive and
then turn on the Apple. (See the next section, "Starting
Logo," if you are not familiar with your computer.)

Terrapin Logo Tutorial

Beginning in Logo

2. When the red light on the disk drive goes out, re­
move the Utilities disk from the disk drive and put it
away in a safe place for future use.

WARNING: BE SURE THE LOGO UTILITIES DISK IS
REMOVED FROM THE DISK DRIVE and replaced
with a blank disk before proceeding. When you type
INIT HELLO, the disk in the disk drive will be erased.
DO NOT TYPE INIT HELLO with your LOGO
UTILITIES DISK in the disk drive.

3. The screen will show the following message:

TERRAPIN LOGO FILES DISKETIE

THIS DISKETIE CONTAINS LOGO PROGRAMS. YOU MUST BE
RUNNING LOGO ON YOUR APPLE TO USE THESE PROGRAMS.

Insert the blank disk you want to initialize into the disk
drive, type

INIT HELLO

and press the <RETURN> key. The disk drive will
whir for almost a minute, then the Apple prompt(])
will appear on the screen and the light will go out on
the disk drive.

4. Type PR#6 <RETURN> to start up the system
using your newly initialized disk. This produces the
same results as turning the Apple off and on again. The
disk drive should spin and the message shown in step
3 above should appear on the screen. (This checks that
the disk really did get initialized.)

Terrapin Logo Tutorial B-7

Beginning in Logo

B-8

Remove this disk from the disk drive, label it im­
mediately, and use it to store your Logo procedures.
We will refer to it again in the section When Logo Has
Started Up later in this chapter.

More information about initializing disks is in the
Logo Technical Manual in the File System section
titled Configuring File Diskettes (page 23) and in the
Apple DOS manual, page 13. BASIC programs and
Logo procedures can be stored on the same disk.

Starting Logo

One of the disks packaged with your system is called
the Language Disk. It is the disk with the Logo in­
terpreter on it. The other disk, labeled Utilities Disk
contains some demonstration and utility programs.
They are mentioned where appropriate in the tutorial
and summarized and cross-referenced in the
Appendix.

Apple II Plus with Disk Drive
and Monitor

Language Disk

Terrapin Logo Tutorial

Beginning in Logo

(1) (2)

With the Apple turned off, (1) place the Language Disk
in your disk drive with the label facing up and closest
to the front. (2) Close the disk drive door firmly. (3)
Turn on the monitor. (4) Turn on the Apple. The on-off
switch is on the back at the left as you face the
machine. (Users of Apple Ils without Autostart ROM
should (A) press <RETURN>, (B) type the number 6,

(C) hold down the <CTRL> key and press P, and (D)
press the <RETURN> key again.)

(3) (4)

Terrapin Logo Tutorial
B-9

Beginning in Logo

B-10

The Apple will print the message

APPLE][

at the top of its screen, the disk drive light will go on,
and the Apple will print

LOADING, PLEASE WAIT ...

If this message does not appear, check to be sure that
you are using the Language Disk and that the disk
drive door is firmly closed.

It takes about 30 seconds to load and start Logo. When
it has started, Logo will print this brief message:

THE TERRAPIN LOGO LANGUAGE

WRITIEN BY L. KLOTZ, P. SOBALVARRO
ANDS. HAIN UNDER THE SUPERVISION
OF H. ABELSON

WELCOME TO LOGO
?

If Logo does not start up after about one minute, your
Language Disk may be damaged in some way, or your
disk drive may be damaged. If other disks work on
your disk drive, the problem is most likely with your
16K Memory card or your Language Disk. If you have
only 48K instead of the required 64K of memory, you
will get a message saying you do not have a language
card.

Terrapin Logo Tutorial

0

Beginning in Logo

When Logo Has Started Up

Logo will print its WELCOME TO LOGO message and
a? when it is ready for you. The? is called a prompt,
prompting you to respond with a Logo command. The
flashing box is called the cursor. It shows you where
the next character you type will appear. Whenever the
cursor is flashing, Logo is waiting for you to type
something.

(This would be a good time to remove the Logo Lan­
guage Disk from the disk drive, put it in a safe place,
and replace it with the blank disk you have initialized
and will be using to store your Logo procedures.)

'
You give Logo directions by typing commands at the
Apple keyboard. Logo reads what you have typed
when you press the <RETURN> key. Pressing <RE­
TURN> is like saying DO IT. Nothing will happen
until you hit <RETURN>.

NOTE ON POINTED BRACKETS: When you see
pointed brackets < > around a word, press the key
on the keyboard with that word on it. Do not spell out
the word. When you see <CTRL> C, hold down the
<CTRL> key and type the letter C. (Think of the
<CTRL> key as a different kind of <SHIFT> key.)

SPECIAL NOTE: Nothing you type can harm the com­
puter or Logo. Even the worst that can happen is not
too bad: pressing the RESET key while using Logo may
take you out of Logo and mean the loss of work you

Terrapin Logo Tutorial B-11

Beginning in Logo

B-12

have not yet stored, but it will not harm Logo or the
computer. Much of the time you can recover your work
after an accidental <RESET> (see below). Don't be
afraid to try things.

Recovery Process

To recover, type <CTRL> Y <RETURN>, that is, hold
down the <CTRL> key and press the <Y>, then press
<RETURN>. (You may have to type <CTRL> G also.)
Usually this will put you back into Logo. If it does not,
turn the machine off and start Logo according to the
four-step summary at the end of this chapter.

When Logo does not understand something
you have typed, it will try to help you by typ­
ing out a message. Most of the time you will
have no trouble figuring out what is wrong,
but when you do, turn to the list of Error
Messages and their explanations (with
examples) in the Appendix.

Once in a great while Logo confesses (rightly or
wrongly) to a bug and puts you into the Apple monitor,
with a line similar to

*FFFF-A = 50 X = 02 Y = 4A P = 30 S = 05

When this happens, Logo will type out explicit
messages and recovery instructions.

Terrapin Logo Tutorial

DEL

CONTROL

KEYBOARD DIAGRAM

SPACE

The Apple II Keyboard

Using the Keyboard

Beginning in Logo

REPEAT

[J

BEFORE YOU BEGIN: If you have an Apple II or II+,
look at the diagram above. You should notice that three
keys have special functions. The <ESC> key, which
we will call from now on, deletes backwards
one character. In addition, <SHIFT>N prints a left
bracket<[>, and <SHIFT>M prints a right bracket
<]>.

If you are using an Apple Ile or Ile, the <ESC> and
<DELETE> keys can both be used for deleting back­
wards. Unlike the Apple II + , the Ile and Ile have their
own keys for right and left brackets.

USE THE EDITING KEYS TO CORRECT TYPING ER­
RORS: The key (<ESC>) moves the cursor to
the left and erases the character there. Each arrow key
moves the cursor in the direction it points on the

Terrapin Logo Tutorial B-13

Beginning in Logo

B-14

keyboard. Any letter, number, or symbol that you type
will appear exactly where the cursor is blinking, even
if you have used the arrow keys to move the cursor
back into the text. The letters under and after the cur­
sor will move to the right to make room.

MARY HAD A UTILE LAMB

Use the (<ESC>) key to erase the last charac­
ter. Try it a few times. Move the cursor back several let­
ters using the left-arrow key. Notice that this does not
erase the letters it travels over. Change the line to read:

GARY HAD A UTILE LAMB
GARY HAD A UTILE HAM
GERTA HAD A UTILE HAM SOUP
GERTA HAD XVP26 A UTILE HAM SOUP

Finally, change it back to

MARY HAD A UTILE LAMB

See how typing characters in the middle of the line
makes the rest of the line move over to make room? You
can never accidentally type on top of other characters
and cause them to be erased.

Press <RETURN> now. Logo will try to understand
the whole line as a series of commands. Since the
words MARY HAD A LITTLE LAMB are not Logo
commands, Logo will tell you so. Type MARY again.

Terrapin Logo Tutorial

Cry.

Beginning in Logo

Tell Logo to ignore what is typed with <CTRL> G (be­
fore you press <RETURN>). To do this, hold down the
<CTRL> key and press the <G> key. (Remember, the
<CTRL> key is like a special <SHIFT> key which is
always used with another key.) Logo will print
STOPPED! and a new prompt. Typing <CTRL> G is
the usual way to stop whatever Logo is doing.

CAUTION: At any time, you can exit Logo by turning
the machine off; however, by doing so, you will lose all
your work unless you have saved it on the disk. You are
also likely to lose your work if you press the RESET key
and have to restart Logo. Use <CTRL> G to stop pro­
grams; stay away from the <RESET> key. (An internal
switch can be set in your Apple II+ to require one to
press <CTRL> <RESET> to activate <RESET>.
Doing this can save a lot of grief if you have an itchy
<RESET> finger.) But be sure to try the recovery pro­
cess outlined above if you do press <RESET>.

Upper Cose and Lower Cose

The Apple Ile and Ile, unlike the Apple II and II+ ,
come with the built-in ability to type both upper- and
lower-case characters. This feature is especially useful
when you are using the TEXTEDIT file on the Utilities
Disk.
Generally speaking, however, you will need to type
Logo commands in upper case. (Primitives typed in
lower case will not be understood.) Be sure to put the
<CAPS LOCK> key (in the lower left corner of the
keyboard) in the down position.

Terrapin Logo Tutorial B-15

Beginning in Logo

B-16

STARTING LOGO: SUMMARY

1. Place Language Disk in disk drive.
2. Turn on Apple; wait approximately 30

seconds while Logo is loaded.
3. After WELCOME TO LOGO is printed,

remove the Language Disk. Insert your
storage disk.

4. You are ready to proceed with Logo.

Terrapin Logo Tutorial

\

)

)

~GRAPHICS

Since this tutorial is writter1. for our reading
constituency , we have placed the section
describing INSTANT for non-reading users at
the end of the Graphics chapter.

Logo puts the user in control from the start. In keeping
with that philosophy, this tutorial will suggest but not
dictate . If you are ever really stuck for an idea, see the
Procedures section of the Appendix. It contains exam­
ples of all the ideas suggested. In fact, after you try
things on your own, look through the Appendix for
new ideas and tips and tricks.

Graphics Mode

Enter the graphics or DRAW mode by typing DRAW:

DRAW

and press the <RETURN > key. (Remember, pointed
brackets around a word refer to a key, not a word to be
typed.)

A drastic change occurs on the screen; the command
you have just typed and all other commands will dis­
appear. A small triangle will appear in the middle of
the screen, and the prompt will be in the lower left
region of the screen.

Logo is now in DRAW mode. The bottom four lines of
the screen are reserved for commands you will type
and the rest of the screen is drawing space.

Terrapin Logo Tutorial G-1

Graphics

G-2

A

?

Splitscreen and Turtle Turtle Enlarged

The small triangle in the middle of your screen is
called the turtle. When it first appears, it is pointing
upward. You can tell where it is heading by the black
bar that runs across its back.

Driving the Turtle: FORWARD (FD),
BACK (BK), RIGHT (RT), LEFT (LT)

You move the turtle with turtle commands. The turtle
can leave a trail as it moves, allowing you to produce a
picture.

'FD 100

Terrapin Logo Tutorial

Graphics

FORWARD always moves the turtle in the direction it
is pointed. Type

FORWARD 100 < RETURN>

or the short equivalent

FD 100 < RETURN>

The turtle will move forward one hundred turtle steps.
The space between the command and the number is
necessary. If omitted, Logo will assume the whole
thing to be a procedure name. (Try FD100 without the
space.)

If you leave out the number that FORWARD is expect­
ing, or the space, or do something else that Logo does
not recognize, Logo will try to help you by printing an
error message. These are usually self-explanatory, but
if you cannot figure out what is wrong , turn to the .
Appendix where error messages are interpreted with
examples.

To make the turtle turn, type the direction of the turn
and the number of degrees:

RIGHT 90 < RETURN> or RT 90 < RETURN>

'FD 100
' RT 90

Terrapin Logo Tutorial

r

G-3

Graphics

G-4

You told the turtle to turn right 90 degrees (a quarter of
a circle). If you type RIGHT 90 again , the turtle will
point straight down.

Type

LEFT 90 < RETURN> or LT 90 < RETURN>

From now on, we'll assume you know to press the
<RETURN > key after a command.

The turtle will turn in place 90 degrees to its left. Try
moving the turtle around yourself. Type BACK (or BK)
with a number of steps.

To clear the screen and start over, type DRAW. DRAW
~ erases whatever picture is on the screen and takes the

turtle to its starting position . Use DRAW whenever
you want to start a new picture.

Play with the turtle some more.
(1) Try some odd distances and turns, such as

FD 87
RT 43
FD 26
LT 141
FD 59

(2) Draw a square
(3) Try a triangle

Terrapin Logo Tutorial

Graphics

Get familiar with the turtle commands. Use the com­
mands or their abbreviations:

Command

FORWARD
BACK
RIGHT
LEFT

Abbreviation

FD
BK
RT
LT

Let Logo Do Your Arithmetic

Whenever Logo expects a number (we call this number
.;;:, its input), you can give it an arithmetic expression to

evaluate to get a number. Logo will do the arithmetic
for you.

Type

FD 10*5
RT 100/3
FD 5 + 5

and Logo figures

FD 50
RT 33.3333 ...
FD 10

This is useful for both accuracy and precision: the
computer will not make a mistake, and the computer
will make a division like 100/3 quite precisely.

An Easy Way to Repeat Yourself: <CTRL> P

You can put as many commands on the same line as
you want, as long as you separate them with spaces.
When you have typed a line and pressed <RETURN>,

Terrapin Logo Tutorial G-5

Graphics

Logo will repeat the line for you if you press
<CTRL> P. (Hold down the <CTRL> key and press
the <P>). Type

FD 50 RT 30 FD 20 RT 115< RETURN>

Logo draws the line. Type

< CTRL> P Logo types

FD 50 RT 30 FD 20 RT 115

You press <RETURN > to do it.

Type <CTRL> P <RETURN> as many times as you
wish; each time Logo will print and execute the line.

If you put a space at the end of your original instruc­
tion, you may also type

< CTRL> P < CTRL> P < RETURN>

fo This will print out two sets of your instructions. You
~ can repeat the <CTRL > P as many times as you wish,

up to 129 characters (9 characters more than 3 lines), as
long as there are spaces between the commands. If you

G-6

have no space at the end of the line, and type
<CTRL> P twice, you will get

FD 50 RT 30 FD 20 RT 115 FD 50 RT 30 FD 20 RT 115

If there is no space at the end of the line when you type
another < CTRL> P (as in the line above), the last com-

Terrapin Logo Tutorial

Graphics

mand of the first batch will not be separated from the
first command of the second, and Logo will stop and
say

THERE IS NO PROCEDURE NAMED 115 FD

You can add a space after you type the < CTRL> P, but
an easier way to insure a space is to put it there when
you type the line (RT 115 < SPACE> < RETURN>).

The Screen: DRAW, NOD RAW (ND),
TEXTSCREEN(<CTRL> T), SPLITSCREEN
(<CTRL> SJ, FULLSCREEN (<CTRL> F)

When Logo is in DRAW mode, the Apple displays four
lines of text at the bottom of the screen. To see the com­
mands you have typed that have disappeared under
the picture, type

TEXTSCREEN or < CTRL> T

Remember that you must hold the < CTRL> key down
while you type the T.

Try typing

< CTRL> T

To get back the split graphics/text screen , type

SPLITSCREEN or < CTRL> S

To show off your drawing without the distracting text,
type

FULLSCREEN or < CTRL> F

Terrapin Logo Tutorial G-7

Graphics

G-8

<CTRL> S will bring back the split screen from either
the text or fullscreen.

To clear the screen and leave DRAW mode,
type NODRAW, abbreviated ND. Type ND
<RETURN> right now.
Type DRAW again to do some graphics projects.

Turtle-driving Projects

1. Determine how many turtle steps it takes to get to
the top edge of the screen.

2. Determine how many turtle steps from the bottom
edge of the screen to the top. From the left edge to
the right.

3. (Tricky one) How many steps from the lower left
corner of the split screen to the upper right corner?

4. (Trickier still) How many from the lower left corner
of the full screen to the upper right?

5. Try each of the commands with a negative number.
(Example: FORWARD-100) How else could the
turtle make the same move?

6. Can you draw a square? A rectangle?
7. Can you draw your initials?

Color: PENCOLOR (PC) and
BACKGROUND (BG)

The turtle has six pencolors and six background colors,
plus a switching so-called color that reverses the color
it passes over. The colors are numbered from Oto 6.

Terrapin Logo Tutorial

Graphics

Here are the colors and numbers for a black back­
ground (BG 0):

Color Number

Black 0
White 1
Green 2

Violet 3
Orange 4

Blue 5
Reverse 6

The PENCOLOR (or PC) primitive takes the number of
the color as input, and sets the turtle's pencolor to that
color. Try typing

DRAW
PC 4
LT 45
FD 50
RT 90
FD 50

To change the background color, type BACKGROUND
(or BG) and the number. BG 1 gives a white back­
ground. BG 1 PC O will give you a black pen on a white
background. Try typing

BG 5
RT 135
FD 62

Terrapin Logo Tutorial G-9

Graphics

G-10

The Apple computer color system determines the use
of background colors. Blue and orange, for instance,
do interesting things when exposed to violet and
green. Combinations which will work as you expect:

PENCOLOR on BACKGROUND draws

4 2 green on green
(erases)

4 3 green on violet
5 2 violet on green
5 3 violet on violet

(erases)
2 4 orange on orange

(erases)
2 5 orange on blue
3 4 blue on orange
3 5 blue on blue (erases)

In addition, changing the background color after a
picture is drawn may change some of the lines in pecu­
liar ways. Returning to the original backgound color
restores the picture.

To see the effects of the different combinations, set a
background color and draw some lines in each of the
different colors. Change the background color and do
it again.

On a black and white screen, colors 2-5 take on differ­
ent textures, but black and white remain the same as
always.

Terrapin Logo Tutorial

Graphics

Logo draws thick lines to obtain clear colors on the
Apple. On a black-and-white monitor, for thin white
lines on black, use BG 6 and PC 1 through 5. PC O is
black. (On a color monitor, these lines will not be uni­
formly white: vertical lines will be red or green, de­
pending on their position.)

The Magic of PENCOLOR 6: Erasing

PC 6 changes black to white and white to black when
turtle tracks cross. This means that the turtle can erase
a line by going back over it with PC changed to 6. To
see how it works, type

FD 100
PC 6
BK 100

Now is the time to see one of the amazing effects you
can create.

Type

PC 6
LT 2
FD 3000

Vary the turn and the distance forward for different
effects. Try starting the turtle at the edge of the
screen ...

Terrapin Logo Tutorial G-11

Graphics

G-12

Something to Try After You Read the
Procedures Section

To see the effect of PC 6 with a non-stop pro­
cedure, choose one that never takes the same
track twice. Clear the screen, hide the turtle,
set your pencolor to 6, the reversing color,
type the name of your procedure, and hit
< CTRL> F so you can watch on the full
screen:

DRAW HT PC 6 (procedure name) < CTRL> F

Introduction to Procedure Writing

Now that you know how to drive the turtle around and
make shapes, we will proceed to giving your shapes
names which will become new turtle commands. You
will be able to type BOX and get your box picture back ,
or SQUIGGLE to draw your squiggle.

To do this , you will write procedures.

A procedure is a series of commands which you design
to achieve a specific purpose . The commands may be
composed of procedures and/or Logo primitives.

LOGO COMMANDS

PRIMITIVE: a command that Logo has already been
taught

PROCEDURE: a command that you teach Logo

Terrapin Logo Tutorial

Graphics

Think of the PRIMITIVES as the core of the ,,. ·)rld of
PROCEDURES you will write.

FORWARD, BACK, LEFT, RIGHT, DRAW, and NO­
DRAW are Logo primitives. You used th€ primitives by
typing their names, with numbers if they required
them. To use a procedure, you do the same.

Naming a Procedure

Type

MOVE < RETURN>

Logo tells you

THERE IS NO PROCEDURE NAMED MOVE

Logo is saying that it does not recognize the word you
typed as either a Logo primitive or a procedure name.
It does not know how to do that command.

Terrapin Logo Tutorial G-13

Graphics

G-14

'MOVE
THERE IS NO PROCEDURE NAMED MOVE

The name of a procedure is the single word that you
type to tell Logo to perform the series of commands in
the procedure.

Since you choose the name, select one that

1. Reminds you of what the procedure does
2. Is easy to remember
3. Is easy to type
4. Will not be confused with another name

Writing a Procedure: EDIT Mode: TO, END,
<CTRL > C, <CTRL> G

To write a procedure, start with the name. The tutorial
will use the name MOVE, but you may use your own.

We tell Logo that we're about to write a new procedure
by writing TO and the name of the procedure. For
example, type:

TO MOVE

When you press <RETURN>, the screen will change:
Logo will clear the screen and print the words

Terrapin Logo Tutorial

Graphics

TO MOVE on the first line. Now Logo is in EDIT mode.
The cursor will be at the beginning of the next line. At
the bottom of the screen there will be a white line with
black letters. It always says the same thing:

EDIT:CTRL-C TO DEFINE,CTRL-G TO ABORT

TO MOVE

I

EOIT CTRL C TO OEFl~E CTRL G TO ABORT

This reminds you that you are in EDIT mode, and tells
you the two ways to get out of it: < CTRL> C to Com­
plete the job and < CTRL> Gin which any changes
you have made in EDIT are Gone.

EDIT mode is very different from IMMEDIATE mode.
In IMMEDIATE mode, Logo does the commands that
you type (like FORWARD or RIGHT) as soon as you
press the < RETURN> key. In EDIT mode, Logo waits
for you to define a whole procedure; that is, to write a
series of commands that will constitute the new proce­
dure.

Terrapin Logo Tutorial G-15

Graphics

G-16

TO (Procedure Name)

IMMEDIATE
MODE
~

DRAW NODRAW

EDIT

(CTRL> C

While you are in the editor you write the procedure. To
use it, you must first get out of the editor by typing
< CTRL> C, which puts you back into IMMEDIATE
mode. (But don't do this yet.)

When you are using the editor, you can use the right
and left arrows to move the cursor and < DEL>
(< ESC>) to erase the character at the left of the cursor,
just as you can in IMMEDIATE mode.

Type a line of text to practice. For example , you might
type

FORWARD 33
RIGHT 55

(or their short versions:)
FD 33
RT 55

Press the

< RETURN>

Terrapin Logo Tutorial

Graphics

key. Note that it moved the cursor tq the next line. In
fact, <RETURN> is just another character to the editor:
you can even erase it with the (<ESC >) key.
Press

< DEL> (< ESC>) and then the
< RETURN>

key again to see this. Press

< DEL> (< ESC>)

until the whole line under TO MOVE goes away. (You
can use the <REPT> (repeat) key on the Apple II+ in
conjunction with (<ESC>) to delete several
characters very quickly.)

(See the APPENDIX and the Technical Manual for a
discussion and summary of some other editing com­
mands.)

Now type a series of commands, alternating FOR­
WARD or BACK with RIGHT or LEFT. Remember to
include the number of turtle steps or degrees, and to
press <RETURN> after each.

For your first time through this tutorial, type either
version of MOVE:

TO MOVE
FORWARD 100
RIGHT 15
BACK 80
RIGHT 25

Terrapin Logo Tutorial

TO MOVE
FD 100
RT 15
BK 80
RT 25

G-17

Graphics

G-18

TO MOVE
FORWARD 100
RIGHT 15
BACK 80
RIGHT 25

EDIT CTRL C TO DEFl~E CTRL G TO ABORT

Look over your procedure to be sure that
(1) the commands are spelled correctly,
(2) that you have used zeros in your numbers and not

the letter O (zeros have slashes through them on
the Apple), and

(3) that there are spaces between the commands and
the numbers.

Use the arrows and the < DEL> (< ESC>) key to fix
~ errors. Use < REPT> (repeat) with the arrows to move

the cursor quickly. When you finish your repairs, leave
the cursor where it happens to be. Logo, unlike other
languages, does not require the cursor to be at the end
of the listing or even at the end of a line when you
leave the EDIT mode.

The white line at the very bottom of the screen tells
you the two ways of exiting from the editor and return­
ing to IMMEDIATE mode.

Press < CTRL> C.

Logo will Complete your procedure definition: it will
return you to IMMEDIATE mode, and will remember
your procedure MOVE while you stay in Logo. It will
confirm that it has read in your program by saying

Terrapin Logo Tutorial

Graphics

MOVE DEFINED

If instead, you type <CTRL> G, your work done in
EDIT mode will be Gone: Logo will return you to IM­
MEDIATE mode without accepting the work you did
in EDIT. <CTRL> G stops Logo, whatever it is doing.
Logo will confirm this state of affairs with

STOPPED!
?

Note above that Logo types PLEASE WAIT ...
then MOVE DEFINED

followed by the prompt ?
(The wait occurs when you write a long pro­
cedure. You will not notice the wait with a
short procedure like thisJ

Congratulations! You have written your first procedure.
You have taught the turtle a new command. But wait!
It's not time for congratulations yet. Does it work? You
must try it.

Running a Procedure

Type

MOVE< RETURN>

Just as typing the name of a primitive makes Logo do
it, typing the name of a procedure makes Logo do what
that procedure says to do. This is called RUNNING or
EXECUTING the procedure.

Terrapin Logo Tutorial G-19

Graphics

G-20

? MOVE

If you have typed a word incorrectly within your proce­
dure, Logo will try to help you by printing an error
message. If you cannot figure out what the problem is,
see the Appendix, which explains error messages with
examples.

~ To make a change in your procedure, reenter the EDIT
v- Y- mode by typing TO and the name of your procedure.

To change MOVE, type

TO MOVE

The screen will look as it did just before you left EDIT.
· -Logo confirms that you are again in EDIT mode with

the white line at the bottom of the screen.

Make your changes using the arrows and
(<ESC>) key (don't forget to use the <REPT> (repeat)
key to make moving easier), and exit EDITwith
<CTRL> C. You are DEBUGGING your procedure
(removing errors, called BUGS).

Run your procedure by typing its name. And now ...
Congratulations! It should look like the picture above.

Terrapin Logo Tutorial

Graphics

Type MOVE again. The turtle will begin at the place it
finished and will go in the direction it was pointing.
You can also add to the shape on the screen by driving
the turtle around with individual commands such as
RIGHT 12 or FORWARD 55, but these commands will
not be included in the procedure.

You may put as many commands on a line as
you wish; separate them with spaces and
press <RETURN> at the end of the line to
run them. If you run over the end of the line,
Logo will continue on to the next line. (In
EDIT mode, Logo puts an exclamation point
to remind you that the line is continued).

CAUTION: In IMMEDIATE mode, Logo will
do commands until it sees something it does
not recognize. If one of the first commands on
a long line of commands is misspelled, it will
stop there and you will have to retype the
incorrect one and all that came after it.

Planning and Drawing Your Favorite Square

Procedures like MOVE draw somewhat random de­
signs. Drawing a specific shape requires more specific
thought about the sequence of commands you will
write.

Example: Define a procedure called SQUARE which
will draw a square.

Terrapin Logo Tutorial G-21

Graphics

G-22

Decisions you must make:

The number of
1. steps on a side (your choice)
2. degrees to turn at the corner (Aha!)
3. times to do a side and/or turn (Hmmm)

Things to remember (always):

• Correct spelling of commands
• Space between command and number
• Use zeros in numbers, not the letter 0
• Press <RETURN> after each line
• Begin with the name:

(for this one, type TO SQUARE)
• End your procedure with END

(Logo will put END in for you if you forget it. The only
time it is definitely needed is when you define more
than one procedure in the editor at the same time.)

• Exit the editor with <CTRL> C
(C for Complete)

Analysis:

Decision 1: From your turtle-driving projects, you
have a good idea of the size of the screen. Choose a
number considerably less than half, so that you can
use your square in larger pictures. (Draw your pro­
posed square on the screen with a felt tipped water
based pen and make the turtle trace it.)

Terrapin Logo Tutorial

Graphics

Decision 2: Only one specific number of degrees will
work here; if you don't know what it is, try a few before
you begin on SQUARE.

Decision 3: No doubt you know how many times you
need to do the side and how many times you need to
turn to draw a square. We will discuss other options
later on.

SQUARE

Defining SQUARE:

To teach Logo the new command SQUARE, type

TO SQUARE

You are now in EDIT mode. Type in the commands
you need, as you determined above. If you make mis­
takes in typing, use the arrow keys and
(<ESC>) to correct them. If the mistake is not on the
line with the cursor, you must move the cursor to that
line to correct it.

Exit from EDIT mode with <CTRL> C (C for Com­
plete).

Terrapin Logo Tutorial G-23

Graphics

G-24

(Forgive the repetion of (C for Complete); we just don't
want you to lose any of the work you have done in
EDIT as you would with <CTRL> G (G for Gone ...))

Type SQUARE to run it. Move or turn the turtle and
run it again, and again. Notice that the turtle draws the
square from wherever it happens to be, and starts off
on the first side in whatever direction it is heading.

Now for a trick or two. You certainly don't
want to spend the rest. of your life typing
SQUARE when you could obtain the same
results typing SQ. (Would you want to have
to type the whole word FORWARD all the
time?) You created the procedure SQUARE
using Logo primitives such as FD, BK, LT,
and RT. Now you can create a procedure SQ
using the new Logo command, the procedure
name SQUARE.

Using tl1e editing techniques you have
learned, write a procedure SQ that looks like
this:

TO SQ
SQUARE

END

Clear the screen with DRAW and run SQ.
Clear it again with DRAW and run SQUARE.
You should get the same results with both.
Now any time you want to draw a square,
type either SQ or SQUARE.

Terrapin Logo Tutorial

Graphics

SQ and SQUARE can also be used in proce­
dures any time you wish, and as many times
as you wish, just like the Logo primitives .

Projects: Simple Procedures

Write several of your own procedures. Choose appro­
priate names, but do not use the name MOVE as we
will be using that again later.

What goes Into a Procedure

Any command you can type at the keyboard, as well as
any procedure you have written, can be used in a pro­
cedure. Some commands have two versions: one is a
word spelled out at the keyboard and the other uses
the < CTRL> key plus a letter. Use the word in a proce­
dure; the < CTRL> version is only for convenience at
the keyboard.

SUMMARY OF COMMANDS USED SO FAR
THAT HA VE A CONVENIENT KEYBOARD
VERSION

Procedure Version

TEXT SCREEN
SPLIT SCREEN
FULL SCREEN

Terrapin Logo Tutorial

Keyboard Version

<CTRL>T
<CTRL> S
<CTRL>F

G- 25

Graphics

G-26

More Primitives: REPEAT, CLEARSCREEN
(CS), HOME, PENUP (PU), PENDOWN (PD)

The Logo command REPEAT saves you the work of
typing a command or series of commands more than
once. You tell Logo the number of times you wish to
repeat, and enclose the command(s) to be repeated in
square brackets.

Try these examples:

REPEAT 4 [FD 23]
REPEAT 3 [FD 30 RT 60]
REPEAT 8 [FD 65 RT 135]
REPEAT 20 [RT 50 FD 15 RT 60 FD 10]

As you will recall, when you type < CTRL> P, Logo
will retype the previous line for you. You press
< RETURN> , and Logo will execute it.

To repeat MOVE 24 times, type

REPEAT 24 [MOVE]

If the turtle starts in the middle of the screen, the de­
sign created by repeating MOVE will go off the edge
(and appear on the opposite side). To avoid this, move
the turtle before starting the design. 100 steps to the
left and 100 steps down turn out to be a good starting
point for MOVE, determined by examination and ex­
perimentation. Find a good starting point for your
procedure.

Terrapin Logo Tutorial

Graphics

To walk the turtle to its starting point for MOVE, type

LT 90 FD 100 LT 90 FD 100

The turtle is there, but it is pointing down. To head it
in the right direction to start MOVE, type RT 180.

Now, what about the track it left? (If you type DRAW to
get rid of the track, you will also send the turtle home.)
To keep it where it is as Logo clears the screen, type
CLEARSCREEN (or CS). Now try that REPEAT line
with MOVE.

DRAW is a combination of CLEARSCREEN, SHOW­
TURTLE (explained later), and HOME, the command
that moves the turtle to the center of the screen and
turns it to point straight up. Walk the turtle around
some, then type HOME to see what happens.

Terrapin Logo Tutorial G-27

Graphics

G-28

There is another way to move the turtle without leav­
ing a trace. Tell it to pick up its pen with PENUP (PU)
before you start, and to put it down with PENDOWN
(PD) when you get there. The line would be

PU LT 90 FD 100 LT 90 FD 100 RT 180 PD

The turtle arrives ready to draw, without leaving
tracks.

The names of the primitives PENUP and
PENDOWN come from the robot floor turtle
which has the ability to pull its pen up and
not draw or put it down and draw.

Procedure Projects

1. Write a setup procedure to move the turtle to its
starting point without leaving a track.

2. Write a procedure using REPEATwhich draws a
design with MOVE.

3. Write a procedure to draw a four-sided figure.
4. Write a procedure to draw a rectangle.
5. Use your setup and rectangle procedures to draw a

rectangle where MOVE began.
6. Write a procedure using REPEAT that repeats the

sequence of drawing a shape with one of your shape
procedures and then turns the turtle (then draws
the shape and turns ...)

Terrapin Logo Tutorial

Graphics

0 Saving Procedures: CATALOG, SAVE, POTS

You have created a procedure which Logo will remem­
ber as long as you do not exit Logo or turn off your
Apple. To be able to turn the computer off without
losing your work, so that you may be able to use these
procedures another day, you must ask Logo to SA VE
them on a Logo file disk. Use a file disk prepared ac­
cording to the instructions in the section titled Prepar­
ing a Blank Disk.

When you use the SAVE command, every procedure
in your workspace is saved in a file on your disk. Your
workspace is like your desktop. You do your work
here, sometimes creating new material, sometimes
bringing copies of files out of the drawers. When you
finish for the day, you go to the copying machine, make
a copy for the file, and file the copy away. Everything
you are currently working on is on your desktop (in
your workspace). This may include many procedures.
When you want to save the contents of your workspace
(desktop), use SAVE to transfer a copy of it to the disk
(desk drawer).

You can use and change procedures only when they
are in your workspace, not on the disk. When you are
happy with your changes, or finished for the session,
you store a copy of the workspace contents back as a
file on the disk.

The SA VE command copies the entire contents of your
workspace into a file on the disk. Just as your proce­
dures have names, the collection of procedures in your
workspace, which will be saved in a file, must have a
name too, to distinguish it from your other files. Since

Terrapin Logo Tutorial G-29

Graphics

G-30

you choose the name for the group of procedures in
the file, it is a smart idea to choose a file name that tells
you what they are. The file name SHAPES might be
useful for the first group of procedures you will be
writing as you go through this chapter.

Type

SAVE "SHAPES

~ __p. The double-quote character immediately preceding
~ the word is a crucial part of the file name. You cannot

omit it. If you try to store your workspace without it, ..
nothing will be saved, because Logo does not recognize
it as a file name without the quote character. If you try
to read a file without it, Logo will not find the file.

The quote distinguishes other types of names from
procedure names. There is no space between the quote
character and the word.

~_J;,, WARNING: You can have only one file per file name.
~ Therefore, for the time being, use a new file name each

time you save your workspace (such as SHAPES,
SHAPES1, SHAPES2). (The Appendix includes more
details about saving procedures.) If you had already
had a file called SHAPES, the contents of the old file
would be erased, replaced by the present contents of
your workspace.

If you had nothing in your workspace (which is the
case every time you turn on the computer, before you
read a file or write a procedure) and typed SAVE
"SHAPES, Logo will print out a message telling you
there is nothing to save. But if you had one item in

Terrapin Logo Tutorial

Graphics

your workspace, Logo would still save the entire con­
tents of your workspace, even though it is almost
empty, and the file "SHAPES would be replaced by a
copy of the almost empty workspace. The old file
"SHAPES on the disk would be gone.

This would be like taking a blank book with only a
title page to the copying machine, copying it, and re­
placing your old files in the drawer with the copies of
the blankpaper.

To see the names of the files you have saved on your
disk, type

CATALOG

Everything on the disk will be listed, including the
HELLO file which was put there during the initializa­
tion process, which must stay there although you will
never need to use it again. Each Logo file will have
your file name followed by .LOGO. For example, the
new entry SHAPES.LOGO will appear on the list.

To print out the titles of your procedures in your work­
space, type

POTS

To print out the commands in a procedure, type PO
(procedure name) i.e.

PO BOX

Terrapin Logo Tutorial G-31

Graphics

G-32

SUMMARY

Command Purpose: Lists Example

CATALOG Files on disk CATALOG
POTS Procedure titles POTS
PRINTOUT or PO Procedure commands PO BOX

Clearing the Workspace, Reloading Proce­
dures: READ, GOODBYE, ERASE (ER),
ERASE ALL (ER ALL), ERASEFILE

You may reload procedures into your workspace at
any time. The most usual time might be when you
begin a new session with Logo, but there will be times
when you wish to add the contents of another file to
what is already in your workspace. To list on the screen
the files which are saved on your disk, type CATALOG,
as before. To reload the procedures from your file
SHAPES.LOGO, type

READ "SHAPES

The red light on the disk drive will go on, the disk will
whirr, and the computer will print out the name of
each of your procedures in your file SHAPES and
confirm that it has been read into your workspace by
printing DEFINED. For instance,

MOVE DEFINED

Terrapin Logo Tutorial

Graphics

A word of warning: if you have changed MOVE in
your workspace, the version read in from the disk will
wipe out the one in your workspace. If you want to
keep both versions, rename the one in your workspace
using EDIT, before you read in the file. You can change
the name in EDIT mode just as you change a command.

To store them all back in SHAPES, type

SAVE "SHAPES

SAVE "FILENAME

WORKSPACE FILES

READ "FILENAME

There will be times when you want to clear your work­
space, particularly when you want to shift gears and
read in another file. If you want to save your current
work, save it first.

To clear your workspace, type

ERASE ALL

Terrapin Logo Tutorial
G-33

Graphics

G-34

It is always possible to erase whole files from a disk.
The command which does this is ERASEFILE. For
example, to permanently delete a file called JUNK,
type

ERASEFILE "JUNK

to Logo. Always double-check to see that you're not
erasing a file you want to keep.

Selective Uses of SAVE, PO, ERASE (ER}, and
EDIT(ED)

Certain Logo primitives can take a list of procedures as
input instead of just one procedure name. For instance,
typing

PO [SPIRAL SQUARE TRI]

will produce a screen listing of all three procedures.
Likewise, typing

ER [TRI SQ CIR]

will erase all three procedures. In this case, the option
of giving ERASE a list as its input is convenient but not
crucial; the same effect could be achieved by typing

ER TRI ER SQ ER CIR

Using an extra input list with SAVE or EDIT is a bit
more powerful, as it allows you to do things not
otherwise possible.

Terrapin Logo Tutorial

Graphics

Suppose you had two similar procedures, TRI and
TRI2, and wanted to edit them together. You could
type ED ALL, but then every procedure would appear
in the editor; also, TRI and TRI2 might not be together.
A simpler approach would be to type

ED [TRI TRl2]

SAVE normally puts all existing procedures into a new
file. However, by using an input list you can save a
selected list of procedures. If you have several proce­
dures in your workspace and want to SAVE only a few
of them, you can type something like

(SAVE "FIGURES [SQ TRI STAR])

The parentheses are necessary in order to tell Logo to
expect an extra in put.

Saving, Reading and Erasing Pictures:
SAVEPICT, READPICT, ERASEPICT

Logo can store complicated pictures on your
disk and read them back in much less time
than it takes the procedure to draw them.
However, there is a tradeoff in disk space. The
procedure might take 1 block of disk storage
space. The picture will occupy 34 blocks.
Only you can decide when this is worthwhile.

To save a picture (whatever is on the drawing
part of the screen at the time), assign it a
name. We shall use DANCER. To save the

Terrapin Logo Tutorial
G-35

Graphics

G-36

picture part of the screen on the disk under
the name DANCER, type

SAVEPICT "DANCER

The name you choose can be any name you
care to give it. It does not have to be the same
name as the procedure that drew it, but it
could be. The picture can be the result of
running one or several procedures (without
clearing the screen between), or driving the
turtle around, or a combination. Everything
on the picture part of the screen except the
turtle is stored with SA VEPICT.

To recall a stored picture (remember, this one
will be listed on the disk as DANCER.PICT),
type

READPICT "DANCER

To remove the picture from the disk forever
(not just from the workspace), type

ERASEPICT "DANCER

In each case, use the double-quote character
before the first character of the name.

Terrapin Logo Tutorial

Graphics

The Invisible Turtle: HIDETURTLE (HT),
SHOWTURTLE (ST)

There are two situations in which you might want the
turtle to become invisible.

1. To get it out of the way of your picture either during
the drawing or after the picture is completed.

2. To speed up the drawing of a picture (the invisible
turtle draws faster).

To tell the turtle to become invisible, type

HT (or its long form) HIDETURTLE

To tell it to reappear, type

ST or SHOWTURTLE

Except for being invisible, the hidden turtle works
exactly the same as the visible turtle. In particular, it
draws when its pen is down and leaves no trace when
its pen is up.

Terrapin Logo Tutorial G-37

Graphics

G-38

Summary of Logo Commands Used So Far

TURTLE COMMANDS

Command

FORWARD
BACK
LEFT
RIGHT
HOME
PENUP
PENDOWN
HIDETURTLE
SHOWTURTLE
PEN COLOR
BACKGROUND

SCREEN COMMANDS

Command

CLEARSCREEN
DRAW
NODRAW
TEXTSCREEN
SPLITSCREEN
FULLSCREEN

Abbreviation

FD
BK
LT
RT

PU
PD
HT
ST
PC
BG

Abbreviation

cs

ND
<CTRL> T
<CTRL> S
<CTRL> F

Terrapin Logo Tutorial

Graphics

FILE COMMANDS

READ ERASEFILE
SAVE
SAVEPICT
READPICT
ERASEPICT

PENCOLORS on BG O

PC O Black
PC 1 White
PC 2 Green
PC 3 Violet
PC 4 Orange
PC 5 Blue
PC 6 Reverse

Commands used in all Logo domains (Graphics, Music ,
Computation, etc.):

TO ...
END

READ
SAVE

REPEAT
<CTRL> P

EDIT
<CTRL> C
<CTRL> G

CATALOG
POTS
ERASE
PO

<CTRL> P, <CTRL> C, and <CTRL> Gare keyboard
instructions which cannot be used in procedures.

Terrapin Logo Tutorial
G-39

Graphics

G-40

More About the Editor: <CTRL> P,
<CTRL> N, <CTRL> 0, <CTRL> A,
<CTRL>E, <CTRL>D, <CTRL>K,
<CTRL>Y

In EDIT mode you must often move the cursor from
one line to another. One way to do this is to use an
arrow key and the < REPT> (repeat) key.

It is faster to type

< CTRL> P
to go to the Previous line (Up on the screen),

< CTRL> N
to move the cursor to the Next line (Down on the
screen).

If you are using an Apple lie, the up and down arrow
keys can be used instead of <CTRL>P and <CTRL>N.

To Open up a space to insert a new line, type

< CTRL> 0 (letter 0)

No matter where the cursor is on the line, the rest of
the line will be moved down to the next line, but the
cursor will stay put.

To move the cursor to the beginning of the line, type

< CTRL> A

To move the cursor to the End of the line, type

< CTRL> E

Terrapin Logo Tutorial

1 character
End of line

To Delete the character under the cursor, type

< CTRL> D

Graphics

Note that this is the opposite of the < DEL> key which
deletes to the left of the cursor.

To kill a line from the cursor to the end, type

<CTRL>X

To Yank back the last line killed, type

<CTRL>Y

Other editing commands are described in the APPEN­
DIX and Chapter 2 in the Technical Manual.

SUMMARY OF EDITING COMMANDS

MOVING BACKWARD MOVING FORWARD

Left arrow Right arrow
<CTRL>A <CTRL>E

Adjacent line <CTRL>P <CTRL>N

1 character
Line

Open line

Line

or Up arrow or Down arrow

DELETING BACKWARD DELETING FORWARD

 (<ESC>) <CTRL>D
<CTRL>X

FOR EASY INSERTION OF A LINE

<CTRL>O

RESTORING DELETED TEXT

<CTRL>Y

Terrapin Logo Tutorial G-41

Graphics

G-42

Projects Using Shapes

1. Write a procedure (using SQ or SQUARE) that
puts a square in each corner of the screen. (Hint:
remember PENUP?)(Don't forget PENDOWN)

2. Write a procedure that draws a row of squares.
3. Write a procedure that draws a tower of squares.

(Hint: use your row of squares procedure in it)
4. Write a procedure that draws a leaning tower of

squares. (use your tower procedure)
5. How about a window with four panes?
6. Write a different procedure to draw the same size

square as SQUARE.
7. Using the same sort of analysis used in developing

the SQUARE procedure, figure out how you would
draw a triangle whose turns are all the same size,
then write the procedure.

8. Try #1-4 using triangles.
9. Write procedures to use your 4-sided (not a square)

figure to make designs.
10. How about a window with 6 triangular panes?
11. Write a different procedure to draw the same size

triangle.

Since all your new procedures (and old) are in your
workspace, you can safely save them all in SHAPES by
typing SAVE "SHAPES.

Terrapin Logo Tutorial

Graphics

Listing a Procedure: PRINTOUT (PO),
<CTRL>W

Just as you can print out titles using POTS, you can
also PRINTOUT the list of commands in any proce­
dure. Type

PO (procedure name)

to list the commands in any procedure in your work­
space. Type

PO (procedure name)

to list any other procedure in your workspace. PO pro­
vides a handy, quick way to check on a procedure, but
to make changes in it , you must get into EDIT mode as
described before. Type

PO ALL

to scroll by the listings of all the procedures in your
workspace. Use

~ < CTRL> W (W for Wait)

to stop the scrolling; each < CTRL> W you press after
you stop the scrolling will move one line onto the
screen. You may inspect the titles one by one with more
< CTRL> Ws, or resume the scrolling by pressing an­
other key.

To printout a selected list of procedures , type

PO lPROCl PROC2 ... J

Terrapin Logo Tutorial G-43

Graphics

G-44

SUMMARY OF LISTING COMMANDS

Command Result

CATALOG Lists names of files on disk in
disk drive

POTS Lists names of procedures in
workspace ·

PO (procedure name) Lists com­
mands in named procedure

PO ALL Lists entire content1;, of
workspace

<CTRL> W Wait: computer waits for an­
other key to be pressed: press
<CTRL> W again for line by
line inspection, or any key to
resume scrolling.

Heading: A Matter of State

It is possible that when you closed your square and
triangle, you finished your procedure with FD and did
not follow it with a turn. This left the turtle heading in
the direction the last side required. This makes it
handy to draw successive figures in new positions, but
it leads to confusion when you want to use the shape
in another procedure.

It is generally good programming practice to leave the
turtle in the same state in which you found it. The
state of the turtle is its position and heading. It is al­
ready in the original position, since you closed the
figure. All that is required is to turn the turtle so that it
is heading in the original direction. This means one
more turn, the same size as the other turns.

Terrapin Logo Tutorial

Graphics

Consider these three procedures:

TO SQ
FD 30
RT 90
FD 30
RT 90
FD 30
RT 90
FD 30

END

TO SUPER
REPEAT 8 [SQ RT 45]

END

TO STRANGE
REPEAT 4 [SQ]
RT 45
REPEAT 4 [SQ]

END

Both SUPER and STRANGE draw the same
design (although they draw the parts of the
design in a different order).

Note that the last turn in SQ, the one that
would turn the turtle back to its original head­
ing, is omitted.

ff you edit SQ now to add a RT 90 at the end,
SUPER will still draw the same design (in yet
a new order), but STRANGE will not.

This may seem odd at first because we have
not changed STRANGE. However, we DID
change the procedure STRANGE uses.

To counteract the effect of adding the RT 90
at the end of SQ, we would have to insert a
LT 90 immediately after SQ in each procedure
that uses it.

Terrapin Logo Tutorial G-45

Graphics

G-46

This kind of fix is not always so easy. For
example, if the newly introduced extra was a
line instead of a turn, it would be harder (in
some contexts, impossible) to counteract its
effect.

So it is best to leave the turtle heading as it
started. This will eliminate many interface
bugs (puzzling things that must be fixed in
order to use one procedure after another).

Copying a Procedure

Your procedures SQUARE and TRIANGLE may now
need another command added to them to turn the
turtle to its original heading. But you have used
SQUARE and TRIANGLE in other procedures; chang­
ing them now would spoil the procedures that use
them. Take heart; change SQUARE, but give the new
version a new name, such as SQUARE1. While in EDIT,
change the name slightly (it can be edited like any
other part of the procedure), then move down and add
the new command. Voila. You now have your original
procedure plus a slightly altered copy under a new
name.

A Magic Number

Now for a rather basic question: how far around did
the turtle turn when it drew the square that left it in
the same state that it started from (same position and
heading)? (Add up the turns.) How far around did the
turtle turn when it drew the triangle that left it in its
original state?

Terrapin Logo Tutorial

Graphics

You have just discovered a great truth: the turtle will
turn the same amount to get back to its original head­
ing, no matter how it goes. The total amount of the
turn, adding the turns in one direction and subtracting
if it turns the other way, will be the magic number you
just discovered. (Of course, if it goes one way and then
cancels the turn out completely by going the other
way, the total turn will be 0, but it will not have trav­
eled completely AROUND anything, either.) This is
called The Total Turtle Trip Theorem: if the turtle
travels around an area, no matter what shape, and
ends in the same place that it started, heading in the
same direction, it always turns the same amount.

You can use the magic number to make shapes with
any number of sides. To see the relationship between
the magic number and the turns you made in the
square, divide the magic number by the number of
turns. Let Logo do it for you. On the computer, where
we cannot type one character above another on a single
line, we use the slash(/) (on same key as the?) for
division. To divide 10 by 5, type

10/5

Logo will reply

RESULT: 2

Remember, when Logo requires a number, it can use
the result of an arithmetic operation, so you can also
use this division as the number required by the Logo
primitives FD, BK, LT, and RT. For example,

Terrapin Logo Tutorial G-47

Graphics

G-48

Command

FD 100/2
RT 300/30
BK 200/4
LT 360/4

Equivalent

FD 50
RT 10
BK 50
LT 90

Projects: More Shapes

1. Using REPEAT and division in your turn command,
write another procedure that draws a square.

2. Using REPEAT and division in your turn command,
write another procedure that draws a triangle.

3. Using REPEAT and division in your turn command,
write a procedure that draws a 5-sided figure.

4. Write a procedure that draws a 6-sided figure.
5. Write a procedure that draws a 7-sided figure.
6. How about a 15-sided figure?

Introduction to Variables:
Procedures That Take Inputs

DRAW does the same thing each time it is used. FOR­
WARD is more flexible; it moves the turtle different
distances depending on its input.

INPUT is the specific term for the number required by
commands like FD, BK, LT, and RT. (Later you will
also see INPUTS which are not numbers.)

So far your procedures have always done the same
thing each time they were used, but it is possible to
write procedures which use some input to tell them,
for example, how much to move the turtle.

Terrapin Logo Tutorial

Graphics

It would be nice to have a BOX procedure which draws
different sized squares, just as we have a line procedure
(FORWARD) which draws different lengths ofline.

We would expect BOX 10 to produce a small box and
BOX 100 to produce a larger box. To describe what
happens more fully, we might say:

To draw a box of some dimension,
we go forward that dimension,
turn right 90 degrees,
go forward that dimension,
turn right 90,
forward that dimension,
right 90,
forward dimension,
right 90

and that's it.

The Logo translation of the English is very similar:

TO BOX :DIMENSION
FD :DIMENSION
RT 90
FD :DIMENSION
RT 90
FD :DIMENSION
RT 90
FD :DIMENSION
RT 90

END

Terrapin Logo Tutorial G-49

Graphics

G-50

Or, we could have said:

To draw a box of some dimension,
we must, 4 times, go forward that dimension
and turn right 90 degrees.

which translates into Logo as

TO BOX :DIMENSION
REPEAT 4 [FD :DIMENSION RT 90]

END

NOTE:

1. The : that appears in the procedure must be there
every time an input variable is used, attached di­
rectly to the variable name without a space between.
The dots distinguish the name of a variable from
the name of a procedure. We call the colon(:) DOTS
because it is more descriptive. Read :DIMENSION
as DOTS DIMENSION.

2. Variable names are just as much your choice as
procedure names. We could have written

TO BOX :WIDTH or
TO BOX :DIST or even

TO BOX :X

Of course, the name you choose in the title line
must also be the one used within the procedure, so
those procedures would have had

FD :WIDTH FD :DIST and FD :X

3. Note where the variable-number name must go, in
the same place in which you previously put the

Terrapin Logo Tutorial

Graphics

constant number. In the procedure TRI, for example,
FD 100 becomes FD :LENGTH. To pass the number
into the procedure for FORWARD to use, the title
now must become TO TRI :LENGTH.
The two procedures look like this:

TO TRI
REPEAT 3 [FD 100 RT 120]

END

TO TRI :LENGTH

TRI

REPEAT 3 [FD :LENGTH RT 120]
END

[>

This TRI procedure is very much like the Logo primi­
tives you have been using. For a triangle of any size,
you type TRI and the length of the side.

Try a few triangles of different sizes.

Try typing TRI without a number. Now that TRI is
defined with a variable input, Logo looks for that input ,
just as it does when you type FD or RT. To recall just
what inputs a procedure is expecting, type either
POTS, to print out the titles of all the procedures in
your workspace, or PO (procedure name), to print out
the one procedure (for instance PO TRI).

Terrapin Logo Tutorial
G-51

Graphics

G-52

You have a choice now when you want to use TRI in
another procedure. You can specify the size of the trian­
gle in the procedure (TRI 75), or you can choose to
decide on the size when you run the superprocedure it
is in. You must pass the number in to TRI if you do not
specify it inside the procedure. For example:

TO TWO.TRI
TRI 75
RT 90
TRI 75

END

TO TWO.TRl2 :LENGTH
TRI :LENGTH
RT 90
TRI :LENGTH

END

Note: Two words can be combined with a dot to make
a title.

Both versions of TWO.TRI use the same subprocedure
TRI. Both versions can make a triangle design with
triangle sides oflength 75. BUT one version can only
draw a size 75 design, while the other can draw de­
signs of any size. The size of its design will depend on
the number you give it when you run it.

The variable name :LENGTH may be used in any num­
ber of procedures. You are allowed to have only one
procedure named SQUARE or TRIANGLE, but both
may use the variable name :LENGTH. :LENGTH is
what is called a local variable, local to its procedure. A
name used in one procedure will not interfere with the
same name used in another.

This also means that TWO.TRI2 could have used a
different name for the variable than was used internally
by TRI.

Terrapin Logo Tutorial

Graphics

Projects: Sizable Shapes

1. Write a procedure SQV with variable input and use
it in a new procedure SQUARE4 to draw a series of
squares of different sizes, all starting at the same
place. (Hint: you can add to a picture; you don't
have to clear the screen with DRAW everytime you
want to draw something more.)

2. Add another set of squares beside the first.
3. Write a procedure that uses a specific size square in

it.
4. (Here's a toughie) Write a procedure that draws 4

squares, each 25 steps bigger than the last, and
which receives as input the size of the first square
when the procedure is run.

From SQUARE to POLY

SQUARE4 (if you did project 1) now has a variable
input for the length of the side, but it still has two other
numbers, the size of the turn and the number of times
the sequence is repeated. Either or both of these num­
bers could also become variables. (However, if we
change either one, it would not draw a square.)

You know from your experiments that 360 is the magic
number that takes the turtle all the way around and
back to the same heading, no matter what shape it is
going around. You also know that the amount of the
turn at each corner is 360 divided by the number of
turns. Remember too that Logo will do all the work of
dividing for you. You may use 360/4 as the input for
your turn in SQUARE4, for instance.

Terrapin Logo Tutorial G-53

Graphics

G-54

In other words, the SQUARE4 procedure could be
written

TO SQUARE4 :LENGTH
REPEAT 4 [FD :LENGTH RT 360/4]

END

The 4 in both places is the number of turns. SQUARE4
now has a variable input for the length of the side and
one other number that might be changed, the number
of turns or sides. What if we made that number a vari­
able, too?The procedure would repeat the side-and­
turn sequence that number of times, and would divide
360 by the number for the turn. Sounds all right, but it
wouldn't draw a square. It would draw a many-sided
figure, (called a polygon) with the number of sides you
chose when you ran it. Call it POLY.

POLY will need two names for the variable inputs, and
they should clearly describe what they are for.

:LENGTH would be fine for the length of the side
again, and you could use :TURNS for the number of
turns (or sides).

Both variable names must appear in the title, to pass
the numbers in to where they are used in the proce­
dure. Choose the order you will remember best. They
do not have to appear in the title in the order in which
they are used in the procedure, but, when you run
POLY, the numbers must be typed in the same order as
the variables which represent them in the title. POLY
100 4 will be very different from POLY 4 100.

Terrapin Logo Tutorial

Graphics

So POLY could look like this:

TO POLY :LEN :TURNS
REPEAT :TURNS [FD :LEN RT 360/:TURNS]

END

t>oOO()

POLY

Projects: Regular Polygons

Experiment with different inputs to POLY. Write down
the ones you like.
1. What is the difference between POLY 100 4 and

POLY 4 100? Try them both.
2. Try POLY with the same :LENGTH input and a lot

of different numbers for :TURNS.
3. Keep :TURNS the same and try a lot of different

numbers for :LENGTH.
4. Make a design using POLY twice, with a different

number of sides (:TURNS) each time.
5. Use POLY to make a triangle.
6. What is the largest number you can use for turns?

(Hint: hide the turtle for a quicker trip.)

Another View of POLY

Look back at the procedures in which you used divi­
sion to help you draw 3, 4, 5, 6, and 7-sided figures.

Terrapin Logo Tutorial G-55

Graphics

They probably look a lot alike . In English you might
describe them this way:

To draw a shape of some specified number of sides,
repeat for each side: go forward some distance and
turn right 360 divided by the number of sides

Let's use a forward distance of 50. The English trans­
lates to Logo:

TO SHAPE :NUMBER.OF.SIDES
Typeasoneline REPEAT :NUMBER.OF.SIDES

D
D

[FD 50 RT 360/:NUMBER.OF.SIDES]
END

(Note that the REPEAT statement must be typed on
one line.) Type in SHAPE and try it with various in­
puts. Try

SHAPE 3
SHAPE 4

We can also make shapes of various sizes by making
the forward distance a variable. Replace the 50 with
the variable :DIST and add it to the title:

TO SHAPE :NUMBER.OF.SIDES :DIST
Typeasoneline REPEAT :NUMBER.OF.SIDES

G-56

[FD :DIST RT 360/:NUMBER.OF.SIDES]
END

Try

SHAPE 3 50 and SHAPE 50 3

It is important to remember the order of the variables
in the title.

Terrapin Logo Tutorial

Graphics

This procedure produces the same design as POLY
(above). The number of sides will be the same as the
number of turns.

Circles

So far we have drawn only straight lines. How does
the turtle draw curves? When you consider that all it
can do is step and turn, then it must be some combina­
tion of steps and turns in curves as well as in straight­
sided figures. Experiment with small steps and small
turns. Use REPEATwith your little steps and turns to
avoid exhaustion. Try some combinations in IMMEDI­
ATE mode, then make procedures of the combinations
you like.

Some things to remember:
• the turtle draws faster when hidden (HT)
• <CTRL> G stops the turtle, whatever it is doing
• you know how far the turtle must turn to finish back

where it started

Projects: Curves

Try these first, then make procedures of the ones you
would like to be able to use. Give your procedures
descriptive names, for instance, a 6th-of-a-circle arc to
the right might be ARCR6.

1. Use REPEAT to draw a circle, then without clearing
the screen, draw another circle with steps twice as
big as in the first one. Draw another with the turn
twice as big.

Terrapin Logo Tutorial G-57

Graphics

G-58

2. Draw a circle to the right and an identical one to the
left.

3 . Figure out the diameter (distance across) of the last
circle.

4. Draw a quarter-circle arc to the right.
5. Draw another quarter-circle arc with steps twice as

big as the one in #4.
6. Draw a 6th-of-a-circle arc to the left, then a 6th-of-a­

circle arc to the right. (Hint: use division, and let
Logo do it for you)

7. Write a procedure that uses an arc procedure and
straight lines to draw a picture or design.

8. Do these projects using variable inputs for the step
size and the number of degrees.

See the section on Procedures for a way to develop an
arc procedure. There are also several demonstration
arc and circle procedures on the Utilities Disk. See the
Utilities Disk section.

Using Subprocedures

A procedure used as a command in another procedure
is called a subprocedure. The procedure which uses it
is a superprocedure. You have already used SQUARE
as a subprocedure when you called it in the su­
perprocedure SQ, and, if you did the projects, you
used procedures as subprocedures to draw towers,
windows, and a design with arcs and lines.

A subprocedure is useful when you want to use a pro­
cedure as a new primitive in a variety of procedures, or
several times in one procedure. You could write a pro­
cedure to do one side of a square (such as FD 73) and

Terrapin Logo Tutorial

Graphics

one turn (RT 90). If you called it SQUARESIDE, then
your square procedure would look like this:

TO SQUARE2
SQUARESIDE
SQUARESIDE
SQUARESIDE
SQUARESIDE

END

(or perhaps)

TO SQUARE2
REPEAT 4 [SQUARESIDE]

END

r
SQUARESIDE

Terrapin Logo Tutorial

D

SQUARE2

G-59

Graphics

WINDOW

Any Logo procedure can be a subprocedure. In addi­
tion, subprocedures may have subprocedures of their
own.

For example:

SQUARE2 uses SQUARESIDE as a subprocedure.

We write WINDOW which uses SQUARE2 as a subpro­
cedure.

SQUARE2, which has SQUARESIDE as a subproce­
dure, is now also a subprocedure.

We write HOUSE, which uses WINDOW, and TOWN,
which uses HOUSE ...

We can build as far as we want;
all the procedures except the top one (TOWN) will be
used as subprocedures, and all but the bottom one
(SQUARESIDE) will use subprocedures. All but TOWN
and SQUARESIDE will both use and be subprocedures.

HOUSE TOWN

0 _ The point of this exercise is to show that even now you
~ are writing procedures you can use later on. As you

write your way through the tutorial, note the proce­
dures that may be particularly useful to you as subpro­
cedures. You might even want to file them separately

G-60 Terrapin Logo Tutorial

Graphics

after a while, in a file called NEW.PRIMITIVES (Logo
allows you to use periods in your procedure and file
names to connect words.) Your arc procedures are
good examples of useful primitive-like subprocedures.

Non-stop Procedures:
Introduction to Recursion

Your procedures up to now have been very well-be­
haved and have stopped when you told them to. Now
let's try a type of procedure that simply doesn't know
when to stop.

As you know, a Logo procedure can use any Logo com­
mand, whether it is a primitive or a procedure. This
includes a procedure being able to use itself.

The ability of a procedure to call itself is called recur­
sion. We shall work up to the power of recursion with
some simple examples. What happens when you tell a
procedure to do itself? Let's try it with a square pro­
gram:

TO SQUARE3 :LENGTH
FD :LENGTH
RT 90 (Stop me with <CTRL> G)
SQUARE3 :LENGTH

END

What have we told SQUARE3 to do?
1. Draw a side and do a turn
2. Do SQUARE3

1. Draw a side and do a turn
2. Do SQUARE3

1

Terrapin Logo Tutorial G-61

Graphics

0

G-62

Only a <CTRL> G typed at the keyboard will stop this
runaway square. It will go over and over the same
track until you stop it. Not very interesting.

But what would happen if there was a side and a turn
that made a design which would not go over itself?
Change the amount of the turn. Try a little more or less
than the 90 used for a square. Try, for example,

FD :LENGTH
RT 87

Projects: Simple Recursion

1. Write a recursive procedure that draws a little figure
then calls itself.

2. Write a recursive procedure that uses arcs and lines.
3. Use your triangle procedure in a recursive proce-

dure.
4. Write a recursive procedure to draw a star.

Recursion: Changing the Input
WRAP, NOWRAP, CONTINUE (CO)

Another interesting possibility is that of changing the
length of the side each time it is drawn. Remember,
wherever Logo requires a number, there are several
ways to give it one. We have tried actual values (100 for
instance) and right now we are using a variable
(:LENGTH). The next kind of number to try is a number
which Logo will produce for us by doing some
arithmetic, for instance, :LENGTH+ 3.

Terrapin Logo Tutorial

• SQUARAL

TO SQUARAL :LENGTH
FD :LENGTH
RT 90
SQUARAL :LENGTH + 3

END

Graphics

When SQUARAL calls SQUARAL, it uses a little big­
ger number for the length of the side. Now, even with
a turn of 90, the design will not repeat itself on the
same path.

What happens when you run this procedure: Type

SQUARAL 5

1. The turtle moves FD 5 for the first side
and turns right.

2. Logo runs SQUARAL 5 + 3.

SQUARAL8

1. The turtle moves FD 8, 3 steps more
than the first side and turns.

2. Logo runs SQUARAL 8 + 3.

SQUARAL 11

1. The turtle moves FD 11 and turns.
2. Logo runs SQUARAL 11 + 3.

and soon.

The second side, and each side after it, will be 3 steps
longer than the previous side, and the picture will
clearly not be a square.

Terrapin Logo Tutorial G-63

Graphics

G-64

Before long, the line spills off the edge and
reappears on the other side of the screen.
Logo is in WRAP mode, where the lines wrap
around the screen rather than stopping at the
edge. This can make interesting effects, partic­
ularly with PENCOLOR 6, which reverses the
color when lines cross.

Remember, you can use FULLSCREEN or
< CTRL> F, SPLITSCREEN or < CTRL> S,
and TEXTSCREEN or < CTRL> T to change
the amount of drawing space showing on the
screen.

To make Logo stop the procedure when the
line threatens to get out of bounds, type NO­
WRAP to put Logo into NOWRAP mode.
Now, no matter where the turtle is when you
run the procedure , when the design gets too
big for the screen, Logo will stop it. (There
are more elegant ways to stop recursive proce­
dures mentioned later on. See Stopping With
Style.)

The commands WRAP and NOWRAP, like all
other Logo commands, can also be used in
procedures. Whenever they are used, each
stays in effect until the other is used, or until
you exit DRAW mode .

Terrapin Logo Tutorial

Graphics

Projects: Changing Inputs

Make the changes suggested below and give each
changed version a new name. Run each version with
several different inputs, large and small (SQUARE 10,
SQUARE 100 for instance)

1. Change the amount added to :LENGTH in
SQUARAL make it large; make it very small.

2. Subtract an amount from :LENGTH in SQUARAL
instead of adding to it.

3. Change the size of the turn a little bit.
4. Multiply :LENGTH by a number. Keep trying until

you find one you like. Remember, use the star (*l for
multiplication. (Hint: you can use decimals such as
1.1 or 1.5)

5. Try all of your procedures in WRAP mode and NO­
WRAP mode.

6. In WRAP mode, try your procedures with PENCO­
LOR 6 (PC 6).

7. Write a procedure which takes a variable input and
draws one square. (Hint: use REPEAT) Then write a
recursive procedure that uses the square procedure
as a subprocedure and draws a series of squares
which get bigger and bigger.

Terrapin Logo Tutorial G-65

Graphics

Stopping With Style: IF-THEN, STOP

Logo can make choices based on what you tell it to do.
You can write IF (something) is true, THEN (do some­
thing else) (STOP for instance). (If it is not true, it will
go directly to the next line. If it IS true, and the instruc­
tion is not STOP, it will execute the instruction and
THEN go to the next line.)

For example, you would like to be able to specify the
number of times a recursive procedure executes, and
specify a different number every time you run it. Make
the procedure count down from the number you give
it, and test the count each time it executes with

IF :TIMES = 0 THEN STOP

Here is a procedure that draws a square, turns the turtle
a little, and does it again.

TO DESIGN :TIMES
IF :TIMES = 0 THEN STOP
SQUARE 100
RT 45
DESIGN :TIMES-1

END

This is what happens when you type

0 DESIGN 4

1. Logo tests :TIMES (4) to see if it is zero.
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 4-1 or DESIGN 3

G-66 Terrapin Logo Tutorial ,

DESIGN

Graphics

DESIGN 3

1. Logo tests :TIMES (3) to see if it is 0
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 3-1 or DESIGN 2

DESIGN 2

1. 1. Logo tests :TIMES (2) to see if it is O
2. Logo runs SQUARE and turns the turtle
3. Logo calls DESIGN 2-1 or DESIGN 1

DESIGN 1

1. tests :TIMES (1) to see if it is 0
2. runs SQUARE and turns the turtle
3. calls DESIGN 1-1 or DESIGN 0

DESIGN 0

1. Logo tests :TIMES (0) to see if it is zero
and stops. :TIMES = 0 is finally true .

Control is passed back to each level in turn and the
procedure is done. This aspect of recursion will be
covered in the next section.

What happens when your friend tries to be funny and
runs DESIGN with a negative number?(Ah, you tried it
. . . Well, remember < CTRL> G.)You will be pleased to
know that you can test for that also. In fact, you can
put as many tests as you wish in your procedure. You
can test for that negative number by using one of the
two other conditions, less than (<)or greater than(>).

Terrapin Logo Tutorial
G-67

Graphics

G-68

To cover both situations, your negative friend and the
normal ending of the procedure, change your test:

TO DESIGN :TIMES
IF :TIMES < 1 THEN STOP
SQUARE 100
RT 45
DESIGN :TIMES-1

END

Now DESIGN will stop when :TIMES gets to O and
will never start if :TIMES is less than 0.

The procedure can still have variable inputs for other
values, such as the length of the side of the square:

TO DESIGN :TIMES :LENGTH
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH
RT 45
DESIGN :TIMES-1 :LENGTH

END

You can even change the length each time it is called if
you wish by incrementing it as it is in SQUARAL.

NOTE: Be sure the variable you test in your procedure
will eventually reach the test value. For example, in
our first version of DESIGN, :TIMES would never have
reached O if it had started out negative. The first one, in
fact, will also fail with a decimal such as 10.3.

If you don't happen to think of this possibility, the
procedure may go on and on and on and you won't
know why.

Terrapin Logo Tutorial

Graphics

This is a common problem in writing procedures: the
computer always does what you TELL it to do, whether
or not it's what you want it to do. BUGS creep into the
procedures of the best of programmers.

Bugs can be fun. You can learn from them, and some­
times what the computer does is more interesting than
what you had intended.

Projects: Testing and Stopping

1. Try replacing the 45 in RT 45 with something that
depends on :TIMES, such as 4 * :TIMES.

2. Write a procedure to draw a tower of smaller and
smaller squares, choosing the number of squares
when you run it.

3. In DESIGN, change the input for RT to a variable.
(Remember to add the variable name to the proce­
dure title)

Using the Full Power of Recursion

To see Logo execute procedures step by step,
use TRACE, described in the section on de­
bugging in this chapter, the Appendix, and in
the Technical Manual.

The results of the recursive procedures shown so far
could have been achieved with non-recursive proce­
dures. Each one so far has done something and then
called itself to do essentially the same thing again.
Except for DESIGN, the procedures did not stop by
themselves, so they never had the chance to return to
the top level.

Terrapin Logo Tutoria l G-69

Graphics

G-70

The power of recursion, and what makes it different
from iteration (repetition), is its ability to come back
from the last call to itself (called the deepest or lowest
level), finishing a job at each level as it returns.

This will be a-new concept to many. Logo is one of the
few computer languages with this capability.

The following comparison will illustrate this:

TO COUNTER :NUMBER
IF :NUMBER> 2 STOP
PRINT :NUMBER
COUNTER :NUMBER + 1

END

TO COUNT.PLUS :NUMBER
IF :NUMBER> 2 STOP
PRINT :NUMBER
COUNT.PLUS :NUMSER + 1
PRINT :NUMBER

END

Small numbers are used to permit full step-wise
explanation.

COUNTER works in the same way as DESIGN. Type

COUNTER 1 and Logo will respond
1
2

COUNT.PLUS, as its name suggests, does more. This is
what happens when you type

Terrapin Logo Tutorial

Graphics

COUNT.PLUS 1

1. Logo tests to see if :NUMBER (1) greater than 2.
2. Logo prints :NUMBER (1).
3. Logo calls COUNT.PLUS :NUMBER+ 1 (2).
4. (The last statement, PRINT :NUMBER, is not exe­

cuted.)

COUNT.PLUS 2

1. Logo tests to see if :NUMBER (2) > 2.
2. Logo prints :NUMBER (2).
3. Logo calls COUNT.PLUS :NUMBER+ 1 (3).
4. (The last statement, PRINT :NUMBER, is not

executed.)

COUNT.PLUS 3

1. Logo tests to see if :NUMBER (3) > 2.
2. Logo stops and returns control to the proce­

dure that called COUNT.PLUS 3, which was
COUNT.PLUS 2.

COUNT.PLUS 2

5. Logo executes the next statement in COUNT­
.PLUS 2, which is PRINT :NUMBER. Prints 2.

6. Logo stops and returns control to the procedure
that called COUNT.PLUS 2, which was COUNT­
.PLUS 1.

COUNT.PLUS 1

5. Logo executes the next statement in COUNT.PLUS
1, which is PRINT :NUMBER. Prints 1.

6. Logo stops and returns control to the procedure
that called COUNT.PLUS 1, which was the main
Logo command level.

Terrapin Logo Tutorial G-71

Graphics

COUNTPLUS

I NUMBER 11 I

The diagram shows how all copies of COUNT.PLUS
exist at once, each with its own private value for
:NUMBER.

COUNTPLUS COUNTPLUS

I NUMBER I 2 I I :NUMBER 131

IF NUMBER > 2 STOP IF .NUMBER> 2 STOP IF NUMBER> 2 STOP

PRINT NUMBER PRINT NUMBER

COUNTPLUS :NUMBER + 1 COUNTPLUS NUMBER + 1

PRINT NUMBER PRINT :NUMBER

prints 1 prints 2 just stops
ands~andstops~

G-72

The process of recursion is based on one idea:

When a procedure (A) calls another procedure (B), the
calling procedure (A) puts on hold any instructions
which come after the call. When the procedure (B)
which is called stops, the calling procedure (A) con­
tinues with the rest of its instructions after the call to
(B).

What makes recursion so powerful is that this idea
applies also to (B) and any procedure (B) calls, and any
procedure that THAT procedure calls ...

And all of these copies of the procedure co-exist, each
with its private portfolio of values. All copies are used
and exist as if they were completely different proce­
dures.

Terrapin Logo Tutorial

•

Graphics

An excellent example is the procedure SQS which
produces squares with half-size squares on the corners:

TO SOS :LENGTH
IF :LENGTH < 5 STOP
REPEAT 4 [FD :LENGTH SOS :LENGTH/2 RIGHT 90)

END

TO SOR :LENGTH
IF :LENGTH < 5 STOP
REPEAT 4 [FD :LENGTH RT 90)
SOR :LENGTH/2

END

Note the difference the placement of the recursive
call makes in SQR and SQS.

The procedure EXPONENT in the Computa-
tion chapter and the procedure TET on the Utilities
disk (see the APPENDIX) are two other examples of
good recursive procedures. See also Recursion in Mu­
sic in the music chapter.

See chapter 2 in LOGO FOR THE APPLE II, by Profes­
sor Harold Abelson, M.I.T., for a further discussion of
recursion.

Recursion Projects

1. Write a set of procedures which draw successively
smaller houses. Use subprocedures for the parts of
the house.

2. Write a procedure to draw a binary tree. A binary
tree is av-shaped tree with a smaller v-shaped tree
on each tip. Develop the procedure for the basic V,
then determine where in the procedure you would
insert a recursive call to itself to draw a smaller tree.

Terrapin Logo Tutorial G-7 3

Graphics

G-74

To stop the procedure, use a test similar to the one
used inSQS.

3. Write a procedure that draws a series of successively
larger fish, each totally within the next larger.

Special Effects and New Utilities

Remember that PC 6 changes black to white and white
to black when turtle tracks cross. Try it with SQUARE3
and SQUARAL.

TO SQUARE3 :LEN
FD :LEN
RT 90
SQUARE3 :LEN

END

TO SQUARAL :LEN
FD :LEN
RT 90
SQUARAL :LEN + 3

END

Clear the screen, hide the turtle, set your pencolor to 6
(the reversing colorJ, type SQUARE3, and hit <CTRL >
F so you can watch on the full screen:

DRAW HT PC 6 SQUARE3 < CTRL> F

If you like the effect, write a procedure which will do
it for you at the stroke of a single name. Give the proce­
dure a name and the commands in the line above (use
the word FULLSCREEN for the <CTRL> F):

TO SUPERSQ
DRAW HT PC 6 FULLSCREEN SQUARE3

END

Type SUPERSQ and sit back.

You could also make a separate procedure of the
SETUP part. Make this one of your own utility proce­
dures.

Terrapin Logo Tutorial

Graphics

TO SETUP
DRAW

TO SUPERSQ
SETUP
SQUARE3

END
HT
PC 6
FULLSCREEN

END

Since Logo lets you use primitives and' proce--..
dures the same way, you can build your own
file of new primitives, utility procedures that
do the special things that you want to do.
This might even include procedures like C
which has the single command CATALOG,
simply to save typing ...

If you can change a color once, you can change it again,
both background and pencolor. You can make the
change once in a great while, or you can flash from
one to another.

Here's a flashy example (NOTSQ is not quite a square)

TO NOTSQ
REPEAT 4 [FD 85 RT 85]

END

TO FLASH.NOTSQ
PC 6
BG O NOTSQ
BG 1 NOTSQ
BG 2 NOTSQ
FLASH.NOTSQ

END

FLASH.NOTSQ sets the pencolor to 6 (reversing), the
background to black, and runs NOTSQ, four lines that

Terrapin Logo Tutorial G-75

Graphics

G-76

don't quite meet. The background changes to white,
four more lines are drawn, the background changes to
a color, four more lines, then the whole procedure
repeats endlessly. Each time a line crosses a line, the
color of that spot is reversed.

RANDOM Numbers, Numbers from
Arithmetic Operations, Inputs, Outputs

The Logo primitive RANDOM will give you a number,
chosen at random from the group you specify. You
specify the group from Oto your number by giving
RANDOM the next higher number. For instance, RAN­
DOM 7 will choose a number from O to 6 (just what PC
and BG need).

The number RANDOM chooses is called its OUTPUT.
If you type RANDOM 7 at the keyboard, Logo will
respond with RESULT: 4 (or some other number from 0
to 6), just as it printed RESULT: 90 when you typed
360/ 4. Both RANDOM and the arithmetic operation
produce a result, that is, they each put out a number,
which is called an OUTPUT.

The number RANDOM uses is its INPUT. You can
never leave out an input: the command needs it to
work. On the other hand, in IMMEDIATE mode, Logo
will print an output as a RESULT sometimes. However,
any time Logo expects to go on, as in a procedure or a
REPEAT command, it needs to know what to do with
that output. Try typing

REPEAT 4 [RANDOM 8]

and Logo will complain.

Terrapin Logo Tutorial

Graphics

This is equivalent to typing

REPEAT 4 [5]

Give RANDOM's OUTPUT to something that requires
an INPUT (such as FORWARD or PRINT), and you are
in business:

REPEAT 4 [FORWARD RANDOM 8]

Ooh la la ... it works.

To make the turtle's pen or the background take on a
random color, use RANDOM 7 instead of the number.
FLASH.NOTSQ could now be

TO FLASH.NOTSO
PC 6
BG RANDOM 7
NOTSO
FLASH.NOTSQ

END

(You have the choice of editing the old FLASH.NOTSQ
or typing ERASE (or ER) FLASH.NOTSQ and typing
the new version.)

Here FLASH.NOTSQ sets the pencolor to reverse,
picks a random background color, runs NOTSQ, then
does the same three steps again and again until you
stop it.

To avoid using the reversing (eraser) color #6, use
RANDOM 6, which will select numbers from Oto 5. To

Terrapin Logo Tutorial G-77

Graphics

G-78

avoid using black as well (color #0), use 1 + RANDOM
5. This gives you a random number from 1 to 5 because
1 is always added to a random number from Oto 4 .

Try adding one of these lines to one of your procedures:

PC 1 + RANDOM 5
BG 1 + RANDOM 5

Note that the number used with PC (PENCOLOR) and
BG (BACKGROUND) is the result of an arithmetic
operation again, addition this time. Recall that some of
the turns in your shape procedures were calculated by
division.

Any time a number is required in Logo, it can be given
as the result of an arithmetic operation . In Logo, use +
and - for addition and subtraction (as usual), the slash
(/) for division, and the star(*) (or asterisk) for multi­
plication . There are rules you need to know if you use
more than one operator (+ - /*) at a time; see the COM­
PUTATION chapter for details on that.

Projects Using Random

1. Substitute FORWARD RANDOM 100 for the side
inSQUARE3.

2. Write a REPEAT statement using a FORWARD com­
mand and a random turn from Oto 360 degrees.

3. Write a recursive procedure using a FD command
and a random turn between 90 and 180 degrees.

4. Try some other ranges for turns; choose the most
interesting to keep as a procedure.

Terrapin Logo Tutorial

0

Graphics

Debugging by printing values: PRINT (PR)

Logo is one of the easier computer languages to debug
(get rid of the errors, called bugs) because large pro­
grams are composed of small procedures. It is a lot
easier to debug a small procedure than a long, compli­
cated program. Always make sure your procedures are
debugged (run correctly by themselves) before you use
them in other procedures.

TO DESIGN :TIMES :LENGTH
IF :TIMES = 0 THEN STOP
SQUARE :LENGTH
RT 45
DESIGN :TIMES-1 :LENGTH

END

In DESIGN, if you type

DESIGN 6.5 100

the procedure will never stop.

To find out why, we want to check out :TIMES. It
would be nice to print it out each time ,around.

Use the Logo PRINT (PR) command to check on the
value of :TIMES. Type

TO DESIGN

and add this line (in EDIT mode) just before the test
(before IF .. .) :

PR :TIMES

Terrapin Logo Tutorial G-79

Graphics

G-80

(You can remove it after you have debugged the proce­
dure.)

DESIGN now looks like this:

TO DESIGN :TIMES :LENGTH
PR :TIMES
IF :TIMES = 0 THEN STOP
SQUARE :LENGTH
RT 45
DESIGN :TIMES-1 :LENGTH

END

Type <CTRL> C to leave EDIT mode, then type

DESIGN 6.5 100

As it runs DESIGN, Logo will draw the design in the
graphics part of the split-screen, and will print the
values of :TIMES on the four lines of the text part of
the screen.

Because the values are not whole numbers, if you look
quickly, you will see them get smaller and smaller and
then become negative and get larger and larger. In
other words, :TIMES has passed zero and skipped the
test because :TIMES was never exactly zero.

Now you know that the bug is in the test that failed to
account for this possibility. You can either change the
test or add another test. The best thing to do is change
the test, since two tests are not really necessary. How­
ever, when you change the test, be sure to try out
DESIGN with every possibility you can think of.
ALWAYS test your procedures using all of the
possibilities you can think of.

Terrapin Logo Tutorial

Debugging Using PAUSE: <CTRL> Z
CONTINUE (CO)

Graphics

PAUSE or <CTRL> Z stops a procedure in such a way
that you can start it again. While it is stopped, you can
find out where the (hidden) turtle is by typing SHOW­
TURTLE (or ST), hide the turtle with HT, print the
procedure out with PO, PRINT variable values, or do a
number of other things. To resume running the proce­
dure, type CONTINUE (or CO).

Negative Inputs

There is also another possibility: remember that friend
of yours who likes negative inputs? What happens to
DESIGN if :LENGTH is negative? What happens to
:TIMES? What happens to the friend?

Well, if :LENGTH is negative, the turtle just backs
around in the opposite direction. Logo knows all about
negative lengths.

And the friend? Unless he knows how to give that
negative input, Logo will give him a (no doubt helpful)
error message.

A negative input for the second variable must be in
parentheses to show that it is an input and not a num­
ber to be subtracted from the first variable, for, as you
will recall, inputs can be the results of arithmetic oper­
ations. Type

DESIGN 5 l-100)

Let's set up a situation where the size of the turn be­
tween squares depends on the number of :TIMES the

Terrapin Logo Tutorial G-81

Graphics

G-82

square is drawn, so we can have a complete design. To
do this, we replace the 45 with 360 / :TIMES.

TO DESIGN :TIMES :LENGTH
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH
RT 360/:TIMES
DESIGN :TIMES-1 :LENGTH

END

Now we have two things which depend on :TIMES,
:TIMES itself, which must always be positive, and the
turn between squares, which could be either positive
or negative. A negative turn just goes around in the
other direction.

How can we fix it so a negative number for :TIMES
will give us a positive value for :TIMES, but keep the
negative turn?

To do this, we must write a procedure to test :TIMES,
then call DESIGN with the appropriate values. We also
need to use a variable for the turn, so we can keep it
negative when :TIMES changes to positive. DESIGN
becomes

TO DESIGN :TIMES :LENGTH :TURN
IF :TIMES < 1 THEN STOP
SQUARE :LENGTH
RT:TURN
DESIGN :TIMES-1 :LENGTH :TURN

END

COMPLETE.DESIGN is the procedure which handles
the details:

Terrapin Logo Tutorial

Type as one lin e

TO COMPLETE.DESIGN :TIMES :LENGTH

f
IF :TIMES < 0 THEN

DESIGN-:TIMES :LENGTH 3.60/:TIMES
ELSE
DESIGN :TIMES :LENGTH 360/:TIMES

END

Graphics

This is a one-I1ne procedure, shown here on several
lines for clarity. It must be typed as one line.

This says that if :TIMES is negative, change it to posi­
tive when you call DESIGN, otherwise leave it alone.

1 In both cases, :TURN uses :TIMES directly, so if
:TIMES is negative, :TURN is negative; if :TIMES is
positive, :TURN is positive .

More on Debugging: TRACE, NOTRACE

:...ogo provides a detective system to trace through the
procedure with you as the procedure is executed. Logo
prints each line on the screen, you press < RETURN> ,
and Logo executes the line. Type TRACE to activate
TRACE mode, NOTRACE to get out ofit. See the Ap­
pendix for a full description of TRACE and NOTRACE.

More About the Turtle:
TURTLESTATE (TS), HEADING,
SETHEADING (SETH), TOWARDS

Logo primitives which give information about the
turtle are useful for testing.TURTLESTATE is a good
example , giving a list of four pieces of information.

Terrapin Logo Tutorial G-83

Graphics

G-84

Type

TURTLESTATE and Logo will reply
RESULT: [TRUE TRUE O 1]

if 1. It is TRUE that the pen is down
2. It is TRUE that the turtle is visible
3. Background color is O (black)
4. Pencolor is 1 (white)

Refer to the chapter on Words and Lists for how to test
against a member of a list. You can also print the infor­
mation, i.e. PRINT TURTLESTATE.

Logo uses HEADING for the direction the turtle is
pointing. Type

HEADING and Logo will reply
RESULT: 45.007

or whatever n'umber of degrees the turtle has turned to
the right (clockwise) from facing up.

PRINT HEADING, whether used in a procedure or not,
will print the number alone. You can use HEADING to
stop a procedure after a turn. Example:

IF HEADING < 45 STOP

Use SETHEADING (SETH) to tell Logo what direction
you want the turtle to face:

SETHEADING 45

turns the turtle as if it had turned 45 degrees to the
right from facing straight up.

Terrapin Logo Tutorial

Graphics

To change the turtle's heading by a specific amount,
use both:

SETHEADING HEADING + 5

will turn the turtle 5 degrees to the right.

TOW ARDS turns the turtle to face a point designated
by its coordinates:

SETHEADING TOWARDS 100 (-100)

turns the turtle to face a point 100 turtle steps to the
right (x = 100) and 100 turtle steps down (y = -100)
from the center of the screen. Note that here, too, the
negative input is in parentheses to avoid confusion
with subtraction. Another way to write a negative
second input is to write it as zero minus the number.
Example:

SETHEADING TOWARDS 100 0-100

Position When You Want It : XCOR , YCOR,
SETX , SETY, SETXY

The graphics screen can be thought of as a grid, with X
going across and Y going up and down. At the HOME
position in the center of the screen, X and Y are zero. X
gets larger to the right; Y increases as you go up.Xis
negative to the left of HOME, and Y is negative below
it.

XCOR and YCOR give the X and Y coordinates of the
turtle's position on this grid. Type XCOR, YCOR,

Terrapin Logo Tutorial G-85

Graphics

G-86

PRINT XCOR, or PRINT YCOR and Logo will print the
X or Y coordinate. You may also test against either:

IF XCOR = 150 STOP

To move the turtle to a specific coordinate position,
use SETX, SETY, or SETXY. Only the position will
change; the turtle will not change its heading. Type:

SETX 100
to move the turtle across to x = 100

SETY 100
to move the turtle up or down toy = 100

SETXY 100 100
to move the turtle to the point x = 100, y = 100

SETXY 100 l-100)
to move the turtle to x = 100, y = -100

Use these commands together to move the turtle a
specific distance:

SETX XCOR + 5

moves the turtle 5 steps to the right without changing
its heading.

SETXY XCOR + 5 YCOR - 5

moves the turtle 5 steps to the right and 5 steps down,
keeping the same heading.

SETXY is used in the Computation chapter to draw
curves using their equations. To see how to use SETXY
with joysticks and paddles, see PADDLE in the Techni­
cal Manual.

Terrapin Logo Tutorial

Graphics

INSTANT:
Logo Turtle Graphics for the Non-reader

Your Logo system disk contains a collection of proce­
dures which makes Logo turtle graphics accessible to
young children. The INSTANT system uses single
character commands which are equivalent to longer
Logo commands. You can use colored stickers to iden­
tify the appropriate keys for use with INSTANT.

To use INSTANT, turn on the Apple with the Logo
Language disk in the disk drive. When Logo is loaded
and displaying the question-mark prompt(?), put the
Utilities Disk in the disk drive and type

READ "INSTANT (with the ")

Logo will read in the file of procedures used by IN­
STANT, identifying each as defined. Type

INSTANT (without the ")

The screen will display the commands used in IN­
STANT as follows:

F MOVES THE TURTLE FORWARD
R TURNS IT RIGHT
L TURNS IT LEFT
D DRAW (CLEARS THE SCREEN)
U UNDO (ERASES LAST COMMAND)
N NAMES THE PICTURE
P SHOWS A PICTURE, ASKS FOR ITS NAME.
? GIVES HELP

PRESS ANY KEY TO CONTINUE.

Terrapin Logo Tutorial G-8 7

Graphics

G-88

When you press a key, the list goes away, the turtle
appears, and the blinking cursor moves to the lower
left portion of the screen.

Type F to move the turtle forward.Turn the turtle with
either R or L.

D restores the screen to its original condition, erasing
the whole picture.

To erase just the last command, type U. Logo will re­
draw the picture without the most recent command.

Animation Of A Sort

U makes it possible to do some interesting animation,
since every motion of the turtle is relived in the re­
drawing, even though it is not visible in the finished
drawing . For a Lively Line, try typing

FR LL R FR LL R FR LL R u

The idea is to wave the turtle back and forth every
once in a while, perhaps turn it completely around; let
it be indecisive about making a turn ... It all comes out
again when you type the U.

To name a picture, type N and the name. (Names do not
have to be single letters; they can be of any length.) IN­
STANT will create a Logo procedure which has that
name and contains all the steps used in drawing the
picture.

Terrapin Logo Tutorial

Graphics

To get a picture back, type P and its name. When the
picture-drawing procedure is called using P, it is
added to the current list of commands and becomes
part of a new procedure when N is next used. Using N
and Pin this way, you can do structured programming
in INSTANT.

The following INSTANT session demonstrates this
feature. Although the single-letter INSTANT com­
mands do not print out when you type them, they
are shown here for convenience. The computer's
responses appear in italics.

F
F
R
R
N
WHAT DO YOU WANT TO CALL THIS PICTURE?
SIDE
p

WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
p
WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
p

WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
p

WHAT PICTURE DO YOU WANT TO SHOW?
SIDE
N
WHAT DO YOU WANT TO CALL THIS PICTURE?
BOX

Terrapin Logo Tutorial G-89

Graphics

G-90

If you leave INSTANT and print out the procedures
SIDE and BOX, you can see that they are basically the
same procedures developed in the beginning of this
chapter, with minor differences such as three RIGHT
30 commands being used instead of RIGHT 90.

To save a picture on the disk, return to Logo with
<CTRL> G and type SAVEPICT" and the name you
want for your picture. Example:

SAVEPICT "PUPPY

will save the picture on the screen under the name
PUPPY on the disk.

Type

INSTANT

to return to the INSTANT system.

For disk storage of procedures created using INSTANT,
you must leave INSTANT and return to Logo:

1. Type <CTRL> G to return to Logo.
2. Type < CTRL> T for the full screen of text (TEXT

mode)
3. Type POTS to list the procedures you have created

(plus the system procedures you saw defined as
they were read in)

4. To write all of the listed procedures to your disk,
put your procedure-storage disk in the disk drive,
and type

SAVE "INSTANT

Terrapin Logo Tutorial

Graphics

All the procedures listed will be written to your disk.
In subsequent sessions using INSTANT, READ "IN­
STANT from your own disk instead of the Utilities
disk. You will have everything you need to run IN­
STANT as well as all previously written original proce­
dures.

If you want only the procedures created by INSTANT,
you can use SAVE with two inputs: a filename and a
list of procedures . See the earlier section on Saving
Procedures.

Modifying INSTANT

Like many of the programs on the Utilities Disk,
INSTANT can be expanded or modified to include
more complex commands. To add new single-letter
commands , edit the COMMAND procedure.

Terrapin Logo Tutorial G-91

OMPUTATION:
~ HANDLING NUMBERS

J

COMPUTATION:
~ HANDLING NUMBERS

Perhaps you've begun to wonder if Logo can do any­
thing but draw pictures. Have no fear! Like any other
full computer language, Logo can perform a variety of
numerical operations

Logo uses integers (whole numbers like 4, 67, 1918)
and real numbers (numbers with a decimal part like
4.55, 3.14159) without distinguishing between them.
7/2 (7 divided by 2) is always 3.5 in Logo.

Logo also recognizes "floating point" num­
bers, which use a form of scientific notation.
For instance , 5000 can be represented as 5E3
(5 times ten to the exponent 3); likewise,
0.005 can be represented as 5N3 (5 times ten
to the exponent-3). Floating point notation is
useful primarily in representing extremely
large numbers. See page 83 of the Technical
Manual for more details.

Arithmetic Operations

When you use a computer, you must type everything
on one line. For the operations of addition, subtraction,
multiplication, and division, Logo uses the following
operators:

as in
Addition + 7+5 (12)
Subtraction 7-5 (2)
Multiplication * 7*5 (35)
Division I 7/5 (1.4)

The star (or asterisk*) is used for multiplication to
avoid confusion with the letter x. The slash (/) is used
to keep division on one line.

Terrapin Logo Tutorial C-1

Computation: Handling Numbers

0

C-2

Raising to powers (exponentiation) uses the procedure
EXPONENT, described below.

Logo will do the arithmetic for you when you give it
an operation for its input. When you type:

FD 26 + 42 Logo will move the turtle 68 steps for­
ward;

PRINT 76 * 42 Logo will print 3192;

RT 360/5 Logo will turn the turtle 72.

Hierarchy of Operations

Doing arithmetic on a line does present some prob­
lems, however. There must be rules about which
operation is done first. Try these:

PRINT 17 + 5)/ 2
PRINT 7 + 5 / 2

In the first, the 7 and 5 are added, to make 12, then the
12 is divided by 2, which gives 6. In the second, the 5
is divided by 2 first, with the result of 2.5, then the 2.5
is added to the 7, giving 9.5.

RULESTHECOMPUTERPLAYSBY

1. Parentheses are the first thing the computer looks for
in evaluating an arithmetic expression. It does what­
ever is in the parentheses first, according to the rest
of the rules.

2. Multiplication and division are done next, from left
to right.

Terrapin Logo Tutorial

Computation: Handling Numbers

3. Addition and subtraction are done last, also from
left to right.

Examples:

1.
4 * 3 + 6 I 3 2 * (3 + 2)

Step 1 4 * 3 + 6 I 3 2 * 5
Step 2 12 + 2 10
Step 3 14 10
Step4 4

2.
4 * (3 + 6) I (3 2) * 3 + 2

Step 1 4 * 9 I 1 * 3 + 2
Step 2 36 I 1 * 3 + 2
Step 3 36 * 3 + 2
Step4 108 + 2
Step 5 110

3.
4 * (3 + 6) I ((3 2) * 3 + 2)

Step 1 4 *(9) I ((1) * 3 + 2)
Step 2 4 *(9) I (3 + 2)
Step 3 36 I (5)
Step4 7.2

So you see, the order in which the operations are done
can make a considerable difference.

Terrapin Logo Tutorial C-3

Computation: Handling Numbers

C-4

Outputs, Integer Operators, Functions:
RANDOM, RANDOMIZE, ROUND, INTEGER,
QUOTIENT, REMAINDER, SQRT, SIN, COS

Arithmetic operations give a result, called an output.
When you type an operation at the keyboard, Logo
will tell you that result. Type

24/3
RESULT: 8

and Logo will type

RANDOM is another Logo operation which gives a
result. It chooses a random number in the group you
select. You specify the group by giving RANDOM the
next higher number.

Type

RANDOM 10
RANDOM 501

Logo will output

a number between O and 9;
a number between O and 500 .

(Type RANDOMIZE before using RANDOM to avoid
identical sequences of random numbers every time
you turn on the computer.)

The other integer operators also output. ROUND
rounds off a real number to the closest integer:

ROUND 6.4
ROUND 2.7
ROUND -6 .4
ROUND -2.7
ROUND 6.5

outputs 6
outputs 3
outputs -6
outputs -3
outputs 7

Terrapin Logo Tutorial

Computation: Handling Numbers

INTEGER gives the integer portion of a real number:

INTEGER 4.3
INTEGER 4.9
INTEGER -4.3
INTEGER -4.9
INTEGER 7/2

outputs 4
outputs 4
outputs -4
outputs -4
outputs 3

QUOTIENT gives the integer part of the quotient of
two numbers:

QUOTIENT 7 2 outputs 3
(the same as INTEGER 7/2)
QUOTIENT 1 2 outputs 0
QUOTIENT -7 2 outputs -3

REMAINDER outputs what is left over from the integer
division:

REMAINDER 7 2
REMAINDER 2 3

outputs 1
outputs 2

When you use real numbers with QUOTIENT or
REMAINDER, they are ROUNDed to integers before
the division takes place.

SQRT produces the square root of the positive number
you give it:

SQRT 160
SQRT 16

Terrapin Logo Tutorial

outputs 12.6491
outputs 4

C-5

Computation: Handling Numbers

0

C-6

SIN and COS output the sine and cosine of the number
given in degrees:

SIN 0
SIN 90
cos 0
cos 90

outputs O
outputs 1
outputs 1
outputs O

In a procedure you must do something with an output.
If you don't, Logo complains that you don't say what
to do with it.You might PRINT it, assign it to a variable
name, or use it in a graphics command:

RT 360/4
MAKE "A 360/4
PRINT :A
PRINT QUOTIENT 5 2
MAKE "B REMAINDER 5 2
PRINT :B

the turtle turns right 90
the value of A becomes 90
Logo prints 90
Logo prints 2
:B becomes 1
Logo prints 1

Variables, Global and Local: MAKE

In Logo, you may use a variable anywhere you can use
a number.

Variable names in Logo may be of any length, made up
of any combination of letters, numbers, or the special
characters ! ," #$. %& ? which leave out only the opera­
tors, brackets and parentheses, and the single quote.

The name of the variable is preceded by the single set
of double quotes("). The value of the variable is pre­
ceded by dots(: also known as colon).

Terrapin Logo Tutorial

Computation: Handling Numbers

Global Variables:

The Logo primitive MAKE gives a value to a variable
which the variable keeps until it is changed with an­
other MAKE command. MAKE can be used either in
IMMEDIATE mode or in a procedure. The value as­
signed is used in any procedure in which the variable
is used; the value is also stored when a copy of the
workspace is saved onto a disk. Variables created with
MAKE are called Global Variables. Examples:

MAKE "Pl 3.14159 gives the variable :PI the value 3.14159

PRINT :Pl prints 3.14159

MAKE "MINE "MINK gives :MINE the value MINK

PrilNT :MINE prints MINK

MAKE "A :Pl gives :A the VALUE of :PI (3.14159)

PRINT :A prints 3.14159

Local Variables:

Local variables are used only in procedures. When a
procedure is running, its local variable(s) have a value.
When the procedure stops, the variable ceases to exist
until the next time the procedure is run. An input to a
procedure behaves as a local variable.

You can also make a variable local to the current pro­
cedure with the LOCAL command (added in version
2.0). Any time MAKE is used after the command
LOCAL, the variable is treated as a local and not a
global variable.

Terrapin Logo Tutorial
C-7

Computation: Handling Numbers

C-8

Local variables are important because they
keep the workspace from becoming cluttered.
Using global variables when local variables
will do wastes memory space that could be
used for other purposes. Also, you can have
several local variables with the same name in
different procedures, but only one global
variable with a given name.

Procedures: TO, END

Any command you can type at the keyboard can be
used in a Logo procedure. To define a procedure,
type TO and the name you have chosen. For exam­
ple, type:

TO CUBE (to obtain a number multiplied by itself
3 times)

The screen will clear, with the procedure title
TO CUBE at the top and a white line at the bottom
which tells you that you are in EDIT mode and
should use <CTRL> C to complete the definition of
your procedure. (<CTRL> G means gone.) (To do a
<CTRL> C, hold down the <CTRL> key and press
the <C> key.)

Type in the rest of the procedure below, and press
<CTRL> C. (See the APPENDIX for a discussion of
commands used in EDIT mode.)

TO CUBE
PRINT 4 * 4 * 4

END

Terrapin Logo Tutorial

Computation: Handling Numbers

Type

CUBE Logo will print 64

You can use a variable to extend the usefulness of this
procedure. Make it print the cube of whatever number
is given it, instead of printing the cube of 4 all the time.
Replace each 4 with the variable name and add it to
the title, so the value of the variable may be brought
into the procedure. You may choose any name for your
variable; a descriptive one is most helpful.

TO CUBE :NUMBER
PRINT :NUMBER* :NUMBER* :NUMBER

END

CUBE now expects a number. This means that you
may not type CUBE by itself any more. When you do,
Logo will tell you that you forgot the input
(:NUMBER).

Now when we type CUBE with a number, Logo will
print the cube of that number.

Type

CUBE 3
CUBE 33
CUBE 333

Logo will print

27
35937

36926037

After CUBE is run, Logo forgets the value of
:NUMBER. Try typing

PRINT :NUMBER

Terrapin Logo Tutorial C-9

Computation

C-10

:NUMBER is a local variable and has value only within
the procedure in which it is used. :NUMBER could be
used in a variety of procedures and have a different
value in every one.

Interactive Procedures: LOCAL, REQUEST
(RQ)

LOCAL is convenient when you don't want to give a
procedure input immediately, but still want to use a
local variable. This is frequently the case with inter­
active procedures, especially if the procedure requires
the user to input more than one variable.

An interactive procedure is one that requires user
input from the keyboard while the procedure is run­
ning. As an example of this, we start with a procedure
which randomly picks two numbers and prints their
product.

TO MULTIPLY
LOCAL "X LOCAL "Y
MAKE "X RANDOM 10
MAKE "Y RANDOM 10
(PRINT :X [TIMES] :Y [IS] :X * :Y)

END

LOCAL specifies that its input (in this case X and Y) be
treated as local variable for the rest of the procedure. In
the procedure shown, RANDOM is used to pick values
for the variables. The last line then prints the variables
and their product as part of a sentence.

Terrapin Logo Tutorial

Computation

Note that X and Y do not have values until MAKE is
used. To see this, put PRINT :X between the LOCAL
and MAKE statements.

PRINT usually takes one input which can be a
word, a list, or a number. In this case it has
five inputs, so parentheses must be used to
tell Logo to expect more than the usual
number of inputs.

To make the procedure continue to pick variables and
print answers, add MULTIPLY as the last line in the
procedure (but before END). Use <CTRL>G to stop it.

Now you have a procedure that is good at picking
numbers and telling you the product, but this isn't an
interactive procedure. There is no way for you to do
anything while the procedure is running. Let's change
things so that you have to type the answer to a ques­
tion. The line with PRINT will become

(PRINT [HOW MUCH IS] :X [TIMES] :Y [?])

Of course, you'll want Logo to tell you whether the
answer you give is right or wrong. The following
procedure will do just that.

TO TESTANSWER :ANSWER
IF :ANSWER = :X * :Y PRINT [CORRECT] STOP
PRINT [INCORRECT]

END

Terrapin Logo Tutorial C-11

Computation

C-12

This procedure looks to see if the value of ANSWER
equals :X * :Y. If this is TRUE, the procedure prints
CORRECT and stops; otherwise, it prints INCORRECT.

How should you combine the two procedures? If you
add TESTANSWER :ANSWER as the line after the
PRINT command in MULTIPLY, where does
:ANSWER come from?

To allow user input, use REQUEST. This primitive
takes input from the keyboard and makes it into a list
when <RETURN> is hit.

TO MULTIPLY
LO CAL "X LO CAL "Y
MAKE "X RANDOM 10
MAKE "Y RANDOM 10
(PRINT [HOW MUCH IS] :X [TIMES] :Y [?])
TESTANSWER FIRST REQUEST

END

REQUEST takes what you type and gives it to TEST­
ANSWERas input. The command FIRST is needed be­
cause REQUEST makes a list; if FIRST were omitted,
the first line ofTESTANSWER would compare a
number with a list containing a number, and the pro­
cedure would print INCORRECT. What we need is the
first (in this case, the only) item in the list, which is the
number you typed in.

Terrapin Logo Tutorial

Computation

Note that TESTANSWER uses X and Y even
though they were not declared in its title line.
A subprocedure always has access to the
variables in the calling procedure(s).

So far MULTIPLY and TESTANSWER could have been
written as one procedure. But what if we wanted to
make the program keep asking for an answer until it
got the right one? To do this, we need a recursive call to
TESTANSWER so it will keep calling itself until you
type the correct answer.

What happens if you add TESTANSWER :ANSWER as
the last line of TESTANSWER? Obviously this doesn't
work! (Try it to see why.) We need to change :ANSWER
in the last line to something else. Hint: look at
MULTIPLY.

Why all this fuss about local variables, whether
created by LOCAL or declared as procedure inputs in
the title line? Global variables take up space. Unless
you have a particular need for a variable that stays
around in the workspace, use a local variable.

Bringing Values Out of Procedures:
OUTPUT(OP)

When the results of running a procedure are to be used
by another procedure, which often happens when the
purpose of a procedure is doing a computation, those
results must be brought out of the procedure for use.

Terrapin Logo Tutorial C-13

Computation: Handling Numbers

C-14

There are two ways of getting values out of a proce­
dure:

1. Create a global variable (described above) .
2. Use the Logo primitive OUTPUT.

The Logo primitive OUTPUT returns values from the
procedure in which it occurs. The values are returned
to the procedure which called that procedure.

If you run a procedure which uses OUTPUT, the proce­
dure will print the OUTPUT on the screen.

If you run a procedure which calls a procedure which
uses OUTPUT, only the procedure you ran will receive
the information from OUTPUT. It will not be printed
unless there is a PRINT statement.

This is similar to what happens when you do
arithmetic operations. Type

3 + 5

and Logo will print

RESULT: 8

Type

FORWARD 3 + 5

and the result 8 only goes to the FORWARD

The turtle moves, but the 8 is not printed on the screen.

Terrapin Logo Tutorial

Computation: Handling Numbers

We can change the PRINT statement in CUBE to OUT­
PUT to show this:

TO CUBE1 :NUMBER
OUTPUT :NUMBER * :NUMBER* :NUMBER

END

Now if you type

CUBE1 3

Logo will print

RESULT: 27

However, if you type

FORWARD CUBE1 3

the graphics turtle will move forward 27 steps.

Example of OUTPUT and Recursion:
A Procedure to Do Exponentiation

A recursive procedure is a procedure which calls itself
as a subprocedure. The procedure EXPONENT, shown
below, uses recursion to raise :X to the power of : Y.

TO EXPONENT :X :Y
IF :Y = 0 THEN OUTPUT 1
OUTPUT :X * !EXPONENT :X :Y-1)

END

Terrapin Logo Tutorial C-15

Computation: Handling Numbers

C-16

In the procedure, Y is used as a counter to make sure
that Xis multiplied together the correct number of
times.

How EXPONENTworks:

1. Tests for the finish, i.e. Y = O
2. Multiplies :X by the result of running EXPONENT

with the counter decremented.
1. Tests for the finish
2. Multiplies :X by the result of running EXPONENT

with the counter decremented, and so on until :Y
is decremented to 0.

Example:

EXPONENT 3 4

We shall follow the recursion down through all its
levels and then trace OUTPUT on its way back up.

Going down, each level is put on hold pending the
appearance of a number needed to complete the com­
putation. Coming back up, each number is output to
the level above and each computation completed.

Terrapin Logo Tutorial

Computation: Handling Numbers

Going down:

EXPONENT 3 4

1. Check to see if :Y (4) is 0
2. OUTPUT 3 * the result output by EXPONENT 3 3

Logo must figure out the value of EXPONENT 3 3.

EXPONENT 3 3

1. Check to see if :Y (3) is O
2. OUTPUT 3 * the output of EXPONENT 3 2

Logo must figure out the value of EXPONENT 3 2.

EXPONENT 3 2

1. Check to see if :Y (2) is 0
2. OUTPUT 3 * the output of EXPONENT 31

Logo must figure out the value of EXPONENT 3 1.

EXPONENT 31

1. Check to see if :Y (1) is 0
2. Output 3 * the output of EXPONENT 3 O

Logo must figure out the value of EXPONENT 3 0.

EXPONENT 3 O

1. Check to see if :Y (0) is O; if it is, OUTPUT 1.

Terrapin Logo Tutorial

OUTPUT stops the procedure and out­
puts the value 1.

C-17

Computation: Handling Numbers

C-18

Going back up:

The 1 is output to the procedure which called EXPO­
NENT 3 0, which was EXPONENT 3 1. This completes
the evaluation in EXPONENT 3 1, which is output to
the procedure which called EXPONENT 3 1, which
was EXPONENT 3 2. The process is repeated until the
top level is reached.

The evaluation of EXPONENT 3 4 on the way down
looks like this:

EXPONENT 3 4 = 3 *(EXPONENT 3 3)
= 3 *13 *(EXPONENT 3 2)
= 3 *13 *(3 * EXPONENT 3 1))
= 3 *(3 *(3 *(3 * EXPONENT 3 0)))

Since the value output by EXPONENT 3 0 is 1, going
back up this becomes

EXPONENT 3 4 = 3 * (3 * (3 * (3 * (1))))
EXPONENT 3 0 outputs 1
= 3 * (3 * (3 * (3 * 1)))

EXPONENT 3 1 outputs 3
= 3 * (3 * (3 * 3)

EXPONENT 3 2 outputs 9

= 3 * (3 * 9)
EXPONENT 3 3 outputs 27

= 3 * 27
EXPONENT 3 4 outputs 81

The 3 is multiplied by itself 4 times, just as prescribed.

Note the use of :Y as a counter which makes sure that
EXPONENT is called exactly 4 times, that is, 3 is multi­
plied by itself 4 times, or raised to the power of 4.

Terrapin Logo Tutorial

Computation: Handling Numbers

Graphing Functions:
Sine, Cosine, Tangent, Parabola, Ellipse,
SETXY, HOME, DRAW, HT

It is easy to graph functions of the form Y = f(X) using
the Logo primitive SETXY, which takes as its inputs
the :X and :Y positions on the Logo screen.

The heart of each procedure is the evaluation of :Y and
the positioning of the turtle (f(:X) is whatever the func­
tion calls for):

MAKE "Y f(:X)
SETXY :X :Y

This is more elegantly accomplished by combining
the two operations. For example:

SETXY :X f(:X)

Principal considerations include

1. Keeping the curve on the screen
2. Positioning the curve
3. Scaling for visibility

To position the start of the curve, we might want to
move :X to the left by the amount :C. Our statement
becomes:

SETXY :X-:C f(:X)

Terrapin Logo Tutorial C-19

Computation: Handling Numbers

To see :Y if it is very small, we might want to multiply
it by a visibility factor :D:

SETXY :X-:C f(:X) * :D

SINE FUNCTION: Y = SIN X

We would like to begin the sine wave at the left edge of
the screen (-140), make it large enough to be visible,
and stop at the right edge of the screen (+140).

To begin drawing at the left edge and yet have :X start
at O for the evaluation of :Y, the X position becomes
:X-140.

To see :Y, which will vary between O and 1, multiply
by 100 (actually anything up to 120, the vertical limits
of the screen).

The procedure starts out as

TO GRAPH.SIN :X
SETXY :X - 140

END
100 * SIN :X

This computes one point and moves the turtle to it. To
continue the curve, increment :X by calling
GRAPH.SIN with an incremented value:

TO GRAPH.SIN :X
SETXY :X - 140 100 * SIN :X
GRAPH.SIN :X + 5

END

C-20 Terrapin Logo Tutorial

Computation: Handling Numbers

To stop the curve at the right edge of the screen, insert
a test for the X positon (:X-140):

TO GRAPH.SIN :X
IF :X - 140 > 140 STOP
SETXY :X - 140 100 * SIN :X
GRAPH.SIN :X + 5

END

To draw a sine wave starting at X = 0, type

GRAPH.SIN 0

An axis would improve the graph (DRAW clears the
screen and moves the turtle to the center, HT hides the
turtle):

TO AXIS
DRAW
HT
SETXY 140 0
HOME
SETXY -140 0

END

Now to draw a sine wave with an X-axis, type

AXIS
GRAPH.SIN 0

Terrapin Logo Tutorial C-21

Computation: Handling Numbers

C-22

The final improvement for the sine wave is writing a
procedure to do that typing for us:

TO SINE
AXIS
GRAPH.SIN 0

END

Finally, to draw a sine wave, type

SINE

COSINE FUNCTION: Y = COS X

Substitute COS for SIN in the GRAPH.SIN procedure,
changing its name to GRAPH.COS. Write a superproce­
dure COSINE to call it with AXIS. The easiest way to
do this is to edit GRAPH.SIN and SINE. See the editing
sections of the Graphics chapter and the APPENDIX.

TANGENT FUNCTION: Y = (SIN X) / (COS X)

The tangent procedure has some different problems.

Note how :Xis incremented slightly if COS :X = 0, to
avoid dividing by 0. Since we don't want to stop the
procedure in the middle of the screen, PU (PENUP) is
used to stop the turtle from drawing when it is simply
wrapping around the screen to get to the off-screen
points. (When the line goes off the edge of the screen,
it continues by entering on the opposite side of the
screen. This is called wrapping.) Using PU requires
adding PD (PENDOWN) to start drawing again.

Terrapin Logo Tutorial

Computation: Handling Numbers

TO GRAPH.TAN :X
IF COS :X = 0 THEN MAKE "X :X + 1
IF :X - 140 > 140 STOP
MAKE "Y (SIN :X) / (COS :X)
IF 100 * : Y > 115 PU
IF 100 * :Y < -115 PU
SETXY :X-140 :Y * 100
PD
GRAPH.TAN :X + 5

END

Here Y is evaluated separately because it must be tested
before the drawing step.

PARABOLA: Y = (X * X) / (4 * A)

The vertex of this parabola is at 0,0; the axis is vertical.
A is the distance from the vertex to the focus. Increas­
ing A makes a wider parabola; decreasing it makes a
narrower one.

The general formula for this parabola is

(X-H) * (X-H) =4 *A*(Y-K)

where His the X co-ordinate and K is the Y co-ordi­
nate. H and Kare O in this example.

In the drawing of the parabola, add PU after AXIS to
avoid leaving a trail to the beginning of the curve.
(This is the same AXIS procedure that is used in the
sine procedure.)

Terrapin Logo Tutorial C-23

Computation: Handling Numbers

C-24

Determine the beginning point in the superprocedure
PARABOLA, using the equation again, with 118 the
value for Y (about the largest possible value for Y).

TO PARABOLA :A
AXIS
PU
GRAPH.P (SQRT (118 * 4 * :A)) :A

END

TO GRAPH.P :X :A
MAKE "Y (:X * :X) / (4 * :A)
IF :Y > 124 STOP
SETXY :X :Y
PD
GRAPH.P :X + 5 :A

END

With a positive value for :A, this will draw a parabola
above the X axis. To allow use of a negative :A, which
would draw a parabola below the X axis, we must use
the absolute value of :A (:A without its sign) in calcu­
lating the starting position of X, since we cannot take
the squareroot of a negative number. We write the pro­
cedure ABS to figure the absolute value for us:

TO ABS :X
IF :X < 0 THEN OUTPUT (- :X)
OUTPUT :X

END

OUTPUT stops after it outputs. So if Xis negative, it
will change it to positive; if it is positive it will output
it directly. PARABOLA becomes:

Terrapin Logo Tutorial

Computation: Handling Numbers

TO PARABOLA :A
AXIS
PU
GRAPH.P (-SQRT(118 * 4 * ABS :A)) :A

END

Since it is a test for Y that stops the procedure, we
must revise the test to allow for a negative Y:

TO GRAPH.P :X :A
MAKE "Y (:X * :X) / (4 * :A)
IF ANYOF (:Y > 124) (:Y < -124) STOP
SETXY :X :Y
PD
GRAPH.P :X + 5 :A

END

To make a family of parabolas, add a recursive call
to PARABOLA (taking care to pick up the pen in
between):

TO PARABOLA :A
AXIS
PU
GRAPH.P (-SQRT(118 * 4 * ABS :A)) :A
PU
PARABOLA :A + 1

END

ELLIPSE FUNCTION:
Y = B * SQRT (1-(X * X) I (A* A))

The center of this ellipse is at 0,0. A is half of the
horizontal axis, B is half of the vertical axis.

Terrapin Logo Tutorial C-25

Computation: Handling Numbers

C-26

The general formula for an ellipse is

(X-H) * (X-H) I (A* A)+ (Y-K) * (Y-K) /(B * B) =1

where H,K are the X and Y co-ordinates of the center,
(0,0) in this example.

The ellipse procedure must solve the problem ofY
becoming negative as X returns to its original value.
Changing the sign of the increment takes care of it.

TO GRAPH.ELLIPSE :X :A :B :INC
IF (:X * :X) > (:A* :A) STOP
IF :X = :A THEN MAKE "INC (-1)
SETXY :X :INC* :B * SQRT (1-(:X * :X) /(:A* :A))
PD
GRAPH.ELLIPSE :X + :INC :A :B :INC

END

The SETXY command must be typed as one line. Use
the same AXIS program as you used with the sine
procedure.

TO ELLIPSE :A :B
AXIS
PU
GRAPH.ELLIPSE -:A :A :B 1

END

Terrapin Logo Tutorial

ORDS&LISTS

)

~ORDS&USTS

INTRODUCTION

So far, all of the procedures that we have described or
encouraged you to write have been non-interactive.
That is, once you started them, they did what they
were designed to do without consulting you further.
The most you might ever have done was press
<CTRL> G to stop them .

Interactive programs are perhaps the most fun of all,
precisely because they interact. They are also poten­
tially the most complex. The reason for this is that
while they are underway, they must account for the
unpredictable behavior of the person with whom they
are interacting.

Interactive movement forms the basis for a variety of
video games and simulations. Interactive language
adds attractive features to these games, but it can also
open up a whole new interest area: mad-libs, quizzes ,
word games, conversational programs that construct
grammatical sentences and "understand " limited
amounts of natural language, even foreign languages.

There are two ways you can approach this chapter. You
may prefer to go quickly through, skipping all of the
indented text, or you may wish to study those portions
as you work your way through the chapter. As in other
chapters, the indented portions add depth and detail
to the presentation.

The procedures you are asked to type in are used
throughout the chapter, so be sure to save them on your
disk when you decide to take a break, and be sure to
read them back in when you start to work on the chap-

Terrapin Logo Tutorial W-1

Words and Lists

W-2

ter again. (CHAPTERW would be an appropriate file
name, so you can type SAVE "CHAPTERW and READ
"CHAPTERW.)

In the graphics chapter, you learned about procedures
which had an immediate and visible effect. FD moved
the turtle (and left a trace on the screen if the pen was
down), DRAW cleared the screen, and so on.

This meant that even without writing procedures, you
were able to give Logo several commands in succes­
sion and see what their combined effect was. You may
even have forgotten what commands you used, but the
screen "remembered" their effect.

Procedures spared you considerable typing. They also
gave you a way of recording the instructions for your
designs. But the designs themselves didn't depend on
the procedures. They would have grown just as surely
on the screen if you had typed each turtle command
line by line.

In this chapter, you will be learning about primitives
that manipulate Logo "objects.'' The effects of these
primitives are not graphic and do not accumulate un­
less you explicitly instruct them to.

These primitives can be explained and used one by
one, but their real power is most apparent in combina­
tion. As a result, the focus of this chapter must be on
building procedures which combine these primitives
in different and varied ways.

Even though there are only roughly a dozen important
new primitives, and even though only about half are

Terrapin Logo Tutorial

Words and Lists

used with much frequency, there are many, many
combinations which can be used in creating sophisti­
cated and interesting programs.

Here are some of the programs that you will learn how
to write in this chapter:

-Interactive video programs
-Quiz programs
-Programs that write and "understand"

language
-Programs that play games
-Programs that learn

Logo's facility with words and lists makes it ideal for
writing conversational programs, quizzes, pig Latin
translators, programs that teach, and even programs
that learn: in short, all programs that need to manipu­
late lists of information.

The chapter is divided into three sections. The first is
devoted entirely to interactive video programs, but in­
troduces some procedures and techniques used in the
remainder of the chapter.

The second section is devoted to programs that manip­
ulate language (quizzes, sentence generators, etc.) and
programs that build and manipulate knowledge bases.

The third section is devoted to building and manip­
ulating more complex knowledge bases, and includes
programs that play games and that learn.

Terrapin Logo Tutorial W-3

Words and Lists

W-4

Interactive Graphics: READCHARACTER
(RC), TOPLEVEL, STOP

Let's create a program to control the turtle with single
key-presses at the keyboard. The initial design will
provide only four turtle behaviors, FD, RT, LT, and
DRAW, and will control them with F, R, L, and D, re­
spectively.

Projects at the end of this section suggest
some additional behaviors to control. Further
additions will become possible with tech­
niques that you will learn later in this chap­
ter.

The procedures that you will be developing
are similar to those in the INSTANT program
on your utilities disk. This program is ex­
plained further in this guide and in LOGO
FOR THE APPLE II, by H. Abelson (published
by Byte Books, 1982, and available from
Terrapin).

In this design, the turtle will be moved Forward 10
steps each time the F is pressed. Each time R or L is
pressed , the turtle will turn Right or Left 15 degrees.
(You may choose any amount, of course, not just what
is suggested here.) Pressing D executes DRAW.

The first task is to create a procedure that takes a single
character as input and controls the turtle un the basis
of that character. Its title line might be:

TO EASYDRAW : CHARACTER

Terrapin Logo Tutorial

Words and Lists

or to save typing

TO EASY : CHTR

The logic is quite simple. If the character is an F, then
perform FD 10. In Logo, this is:

IF :CHTR = "F FD 10

If you prefer, you can add the word THEN,
and write

IF :CHTR = "F THEN FD 10

Some people find it easier to read a program
that has the extra word in it. Others find it
more cluttered that way. We will leave it out
in this chapter.

Similarly, if the character is an R, perform RT 15.

IF :CHTR = "R RT 15

There should be some way of telling the program when
we want to quit drawing to do something else. The let­
ter Q (for Quit) can be used. If that character is the in­
put, the procedure will perform NODRA Wand
TOPLEVEL.

NODRAW gets out of draw mode and clears the text
screen. TOPLEVEL is the Logo primitive that tells
Logo to stop executing a program and return to im­
mediate mode to wait for a new command.

Terrapin Logo Tutorial W-5

Words and Lists

W-6

It is important to know the difference be­
tween TOPLEVEL and STOP. STOP stops the
execution of the procedure in which it is
found, but does not stop other procedures
that may also be running. TOPLEVEL stops
an entire program. Every procedure that Logo
was running stops, and Logo returns control
to the user.

The whole procedure might look like this:

TO EASY : CHTR
IF: CHTR = "F FD 10
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "D DRAW
IF :CHTR = "Q NODRAWTOPLEVEL

END

Define this procedure. Type carefully, making certain
that no spaces are left between the : and the word
CHTR, or between the double-quote character and the
single letter that follows it. Notice also that there is
only one double-quote character on each line.

We will explain in greater detail later, but
provide this brief version for the curious. The
words

"F in IF : CHTR = "F FD 10 and
"CHAPTERW in SAVE "CHAPTERW

Terrapin Logo Tutorial

Words and Lists

arL quoted in order to tell Logo not to treat
the.n as procedures. The words FD and SAVE
are tixecuted by Logo, but we want "F to be
just plain F, literally, and not have Logo try to
execute it as an instruction. Similarly, we
want "CHAPTERW to be the name of a file­
just a name, not something to do. The quoted
word ends at the next blank space, so no final
quote is needed.

Do not add a final quote, since Logo will then
assume you mean to say something like: If the
character is an F followed by a double­
quote-mark, then ... This is not at all what
you want. To demonstrate this , type

PR "A"

After the procedure is defined - remember to type
<CTRL>C - you can try it out by typing

EASY "F
EASY "R
EASY "Q

This is definitely not an improvement over typing FD
10 RT 15 ND, but it contains all the logic for the pro­
gram we intended to create. Now what is needed is
another procedure-let's call it QUICKDRAW­
whose sole purpose is to wait for a key to be pressed at
the keyboard and to give that character to EASY as an
input.

Terrapin Logo Tutorial W-7

Words and Lists

W-8

QUICKDRAW will use the Logo primitive
READCHARACTER, abbreviated RC, to report what
key has been pressed at the keyboard. To make
QUICKDRAW continue endlessly (until a Q is
pressed), QUICKDRAW calls itself as a subprocedure
and looks like this:

TO QUICKDRAW
EASY RC
QUICKDRAW

END

The line EASY RC in QUICKDRA W tells Logo to read a
character typed by the person using the computer and
to use that character as the input to EASY. EASY fig­
ures out what action to perform based on what charac­
ter it receives. If it gets an R, it performs a RT 15.

Even though all five lines of EASY are executed each
time EASY is called, at most one action will be taken,
because only one of the IF tests will be true.

Projects with RC: Extending QUICKDRA W

1. By using the same logic you can add other com­
mands to EASY. Teach the procedure how to control
the pen (PU or PD) in a single keystroke. (You might
assign U to the command PU and P to the command
PD, or you might choose D for PD, in which case you
would need something else for DRAW.)

2. Add SHOWTURTLE (ST) and HIDETURTLE (HT).

Terrapin Logo Tutorial

Words and Lists

3. Teach EASY to change the pen color with two key­
strokes. The first keystroke (C, for Color) will run a pro­
cedure that waits for a second keystroke. If that second
keystroke is a O through 6, the pen will be set to that
color. If any other key is pressed, nothing happens.

The job could, of course, be done with one keystroke,
representing each pen color with a different key. You
might use the number keys directly, or use letters that
represent the color names (for example, W for White, G
for Green, etc.).

A disadvantage of using the numbers is that it would
be nice to have them available for use as "multipliers"
to multiply the effect of the next command. You will
learn a technique for doing this in the next section.
Choosing letters for each color is acceptable, although
it requires that a person remember codes for each color.

4. Use the same technique to change background
color.

Changing the Value of a Variable: MAKE,
PRINT(PR)

We must take a short detour from the QUICKDRA W
program. When you return to it, you will be able to
write procedures which allow multiples of the single
key commands in EASY. For example, 3F will make
the turtle go forward 3 * 10 or 30 turtle steps.

The Logo primitive MAKE is used in several ways. In
this section, we will illustrate one way, and in another
section of this chapter, when we define words, lists,
variables, input, and output more carefully, you will
learn more of the subtleties of MAKE.

Terrapin Logo Tutorial W-9

Words and Lists

W-10

A metaphor for MAKE: When you say

MAKE "NUM 7 or
MAKE "PERSON [MARGARET TRUMAN]

it is as though you are creating locations or boxes
called NUM and PERSON and tossing a 7 into the first
and the list [MARGARET TRUMAN] into the second.
To find out what is in a particular box called NUM, the
Logo command is THING "NUM or, more commonly,
just :NUM, meaning the thing or value that is in the
box named NUM.

Of course, you have been using names to refer to values
all along. We will use the new metaphor to translate a
procedure in a new way.

TO SHAPE :LENGTH :SIDES
REPEAT :SIDES [FD :LENGTH RT 360/:SIDESJ

END

This procedure tells the turtle how to draw a SHAPE
whose features will be found in boxes that the proce­
dure refers to as LENGTH and SIDES. The procedure's
first instruction is to look in its SIDES box for a
number, and REPEAT the following list of commands
that number of times - go FORWARD the dimension
found in its LENGTH box, and turn RIGHT however
many degrees is equal to 360 divided by the number it
found in the box named SIDES.

At the moment that you type

SHAPE734orSHAPE156

Terrapin Logo Tutorial

Words and Lists

Logo puts the 73 or 15 in a location (think of it as a box)
that the SHAPE procedure refers to as LENGTH and
puts the 4 or 6 into another location that SHAPE refers
to as SIDES.

It is important to remember that LENGTH and SIDES
are names that SHAPE uses to keep track of these num­
bers, and that no other procedure knows what SHAPE
keeps in the boxes or even that the boxes exist! Further,
those boxes cease to exist after SHAPE finishes its
work.

Please note, however, that if SHAPE had
called any subprocedures during its execu­
tion, those subprocedures would also have
had access to the values in SHAPE's boxes.

Before getting back to MAKE, define SHAPE as shown
above and then type

SHAPE 50 5

While SHAPE is operating, it executes the command
FD :LENGTH, telling FD to move the turtle forward 50
turtle steps, the number of steps in the box LENGTH. If
the 50 is still left in the box after SHAPE has finished
drawing its pentagon, you should still be able to use it.

Try typing FD :LENGTH to see what Logo will do. Your
screen should look like this:

FD :LENGTH
THERE IS NO NAME LENGTH

Terrapin Logo Tutorial W-11

Words and Lists

W-12

Now back to MAKE. MAKE can assign a value to a box
or change the value that is in the box, and it can do it
equally well in or out of a procedure.

Type MAKE "LENGTH 10 to create a box named
LENGTH and place a 10 in it. Type DRAW to clear the
screen, and then type FD :LENGTH. The turtle will
move forward 10 turtle steps. Type

RT 144
FD :LENGTH

This box did not disappear. It still exists and still has a
10 in it. Type

PRINT :LENGTH

Logo should print 10.

This kind of variable, defined outside of a
procedure, is called a Global variable. See the
explanation of global and local variables in
the chapter titled Computation.

Since there is already a box called LENGTH with a 10
in it, you might think that you could now type just
SHAPE 4 to get a four-sided shape with a size of 10.

If you try that, Logo will complain that SHAPE needs
more inputs. Because SHAPE was defined to take two
inputs, it must always be given two inputs.

Type

SHAPE 50 4

Terrapin Logo Tutorial

Words and Lists

When it executed FD :LENGTH, how far did the turtle
move? Not 10, but 50. And now that the square is
drawn, type

FD :LENGTH

How far did the turtle move this time? Not 50, but 10.
Type PRINT :LENGTH to Logo. Again Logo should
print 10.

A summary of what happened: You told Logo to MAKE
"LENGTH 10. Both before and after running SHAPE
(with its own variable of the same name set to 50), you
were able to show that LENGTH really did have the
value 10. Whether you typed PRINT :LENGTH or FD
:LENGTH, LENGTH represented 10.

However, SHAPE, even though it had a variable of the
same name, did not seem to know about the 1 O and did
not change it to 50, even though that is what SHAPE
considered LENGTH to be.

Until you have had a chance to write enough proce­
dures and have had more experience with variables
and values, they tend to remain confusing, but re­
membering one principle may help.

When a procedure has variables in its title line, the
values of those variables inside the procedure depend
entirely on the values given to the procedure as inputs.
This is true regardless of the existence or values of
variables with the same names that may be found
elsewhere in a program.

Terrapin Logo Tutorial W-13

Words and Lists

W-14

One more experiment with variables and MAKE before
returning to QUICKDRA W. Type

PRINT :NUM

It should reply:

THERE IS NO NAME NUM

(If it prints something different from that, type

ERNAME "NUM

and start again!)

Now type

MAKE "NUM 5 and on the next line type
PR :NUM

(PR is the abbreviation for PRINT.) Now it should reply
by printing a 5.

Define these two very similar procedures:

TO FOO
PR :NUM
MAKE "NUM 2 * :NUM
PR :NUM

END

TO FOOL :NUM
PR :NUM
MAKE "NUM 2 * :NUM
PR :NUM

END

Terrapin Logo Tutorial

Words and Lists

After you have defined them and before you run them,
type PR :NUM again. Logo will still reply 5.

Now, in order and one at a time, type the following
commands to Logo. We will explain the mystery
afterward.

FOO
PR :NUM
FOOL4
PR :NUM
FOO
PR :NUM
FOOL3
PR :NUM

What's happening?! FOO and FOOL have absolutely
identical insides, and yet their behavior is so very dif­
ferent. You printed the value that is inside the box
named NUM before and after running each procedure.

FOO knew about what was in that box and also
changed it, but FOOL did neither. Before and after
FOOL, the value in NUM remained the same - even
though it appears to have two completely different
values inside FOOL.

The explanation is in the title line. As mentioned ear­
lier, when a procedure's title line contains a variable
name in it, that name refers to a totally private box
created just for that procedure.

So FOO could use the value of NUM that was lying
around at the time, and could also change it. But FOOL

Terrapin Logo Tutorial W-15

Words and Lists

W-16

had access only to its private box, which happened to
have the same name, but is altogether a different box.

Whenever the name NUM was used inside FOOL,
FOOL took it to mean its own box of that name. It was
not the public box named NUM that FOOL printed and
changed, but only FOOL's NUM. As soon as FOOL
stopped running, it took its NUM with it.

When you then typed PR :NUM again, you had no ac­
cess to FOOL's private box; instead, you referred to
everyone's public box named NUM. The private vari­
able is called a local variable, and the public one is a
global variable.

Logo version 2.0 includes the command
LOCAL, which allows you to create local
variables without declaring them in the title
line. An example:

TO DEMO.LOCAL
LOCAL "VALUE
MAKE "VALUE RC
PR :VALUE

END

Consult page C-7 for a full discussion of LOCAL.

Admonition: Unless you really intend to make a vari­
able public and available for everybody to use and
change, don't make global variables. They are trouble­
makers (in large programs) precisely because any­
body is free to fool around with them.

Terrapin Logo Tutorial

Words and Lists

On the other hand, the great virtue of global variables
is that they survive even after a procedure is finished.
When you need to have a value remembered even after
the procedure that created it is finished working, use a
global variable.

Otherwise avoid global variables. It is almost never
good style to use MAKE when passing a variable to a
procedure in the title line can be done easily.

Projects with MAKE: More Extensions to
QmCKDRAW

5. Teach EASY to recognize digits and use them to
multiply the effect of the very next keypress. For
example, the effect of typing 3F, should be either FD 30
or REPEAT 3 [FD 10]. You decide which.

If the character 3 is typed to RC, RC's output, which
EASY knows as CHTR, can be used both in tests such
as IF :CHTR = 3 and in numerical expressions such as
:CHTR + 5. You may also find the Logo primitive
NUMBER? useful. The test NUMBER? :CHTR is true
for all characters O through 9.

Project 5 is a reasonable use of MAKE because it re­
quires remembering a number from one execution of
EASY to the next. A command like MAKE "MULTIPLE
:CHTR will put the current value of CHTR into a box
named MULTIPLE.

The contents of the CHTR box will be forgotten when
EASY stops, but since MULTIPLE will be a global vari­
able, the value in that box will not be forgotten and can
be used until it is changed.

Terrapin Logo Tutorial W-17

Words and Lists

W-18

6. Type MAKE "PENPOS [DOWN] and then define
and experiment with the following procedure.

TO PEN
IF :PENPOS = [DOWN] PU MAKE "PENPOS [UP]

ELSE PD MAKE "PENPOS [DOWN]
PRINT SENTENCE [THE TURTLE'S PEN IS NOW] :PENPOS

END

The procedure contains at least one primitive
(SENTENCE) that you have not seen before, and an in­
teresting use of a global variable. When you under­
stand how this procedure works, include it in EASY.

7. Write a similar procedure for ST and HT.

Programs that Interact without Waiting: RC?

Until some key has been pressed, RC cannot output a
message saying which key. That is why QUICKDRAW
always waits until a character is typed. Every time it
runs RC, RC waits until it has something to report back
to EASY.

Sometimes, though, you want the program to keep
going while waiting for the user to type something. For
example, in video-action-games, objects are supposed
to keep moving on the screen whether or not the player
touches the keys or twiddles the knobs.

Let's design a program in which we drive the turtle like
a car. The turtle will always be moving, but we can in­
crease or decrease its speed and can change its direc­
tion. In order to have it moving constantly, we will
need a loop something like this:

Terrapin Logo Tutorial

TO LOOP
FD :DIST
LOOP

END

Words and Lists

Make DIST have some small initial value, like 1 or 2, by
typing MAKE "DIST 2. Then run LOOP. The turtle will
slowly crawl across the screen.

To be more flexible, LOOP should check to see if the
person has typed anything, and, if so, should take
some action before moving the turtle again. RC? is the
primitive that checks to see if a character has been
typed.

The logic is this: If the person has typed a character,

IF RC?

then read the character, and control the turtle accord­
ingly:

EASY RC

So the completed LOOP would look like this:

TO LOOP
IF RC? EASY RC
FD :DIST
LOOP

END

Define LOOP and experiment with it using your EASY
just as it is. How does LOOP behave differently from
QUICKDRAW?

Terrapin Logo Tutorial W-19

Words and Lists

W-20

As it is written, EASY does not give sensitive control
over the speed of the turtle. Pressing F does give a burst
of distance, but the turtle settles back to the same slow
crawl immediately afterward.

Look at LOOP to see what determines the turtle's
speed. Now study EASY to see why it does not alter
that speed. Even though EASY is not quite what is
needed for this program, still it provides a number of
features that are just as appropriate for LOOP as they
are for QUICKDRA W.

So that you can make changes to an EASY-like proce­
dure without changing EASY itself (which is just fine
for QUICKDRA W), make a copy of EASY using a dif­
ferent title. To do this, edit EASY and change the title
in the editor to ACTION. Then, when you define the
procedure, it will be named ACTION.

EASY is still around, as before, but a new copy titled
ACTION now exists also. If you have been doing the
projects, your copy of EASY (and, therefore, ACTION)
will no longer look like the original. But if it did, it
would look like this:

TO ACTION : CHTR
IF :CHTR = "F FD 10
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "D DRAW
IF : CHTR = "Q NO DRAW TOP LEVEL

END

Do you see that although ACTION controls the turtle's
movement, it does not change :DIST, and therefore
does not affect the turtle's speed?

Terrapin Logo Tutorial

Words and Lists

Instead of having F move the turtle directly, it could
increase the distance that the turtle moves each time
through LOOP. The logic might be like this - If the
character typed is F

IF :CHTR = "F

make the distance to travel 2 greater than it was the last
time.

MAKE "DIST :DIST+ 2

If F stood for Faster, S could stand for Slower and de­
crease DIST.

A working version of ACTION might look like this:

TO ACTION :CHTR
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "F MAKE "DIST :DIST+ 2; FASTER
IF :CHTR = "S MAKE "DIST :DIST - 2; SLOWER
IF :CHTR = "D DRAW

END

When you press the F key, the distance that the turtle
will move during each loop increases by 2 steps. The S
key decreases the number of steps per loop.

Define ACTION in one of the ways suggested above,
and write a START procedure like this one:

TO START
MAKE "DIST 0
LOOP

END

Terrapin Logo Tutorial W-21

Words and Lists

W-22

Remember to edit LOOP so that it uses ACTION in
place of EASY.

Now type START and experiment with controlling the
turtle. With practice, you can learn to control it well
enough to draw even complicated figures .

Projects with RC, RC?: Extensions to LOOP

8. By changing LOOP so that both the turtle's position
and heading are updated each time through the loop,
the turtle can then draw curves. Here is how LOOP
would look:

TO LOOP
IF RC? ACTION RC
FD :DIST
RT :ANG
LOOP

END

Design and make some changes to ACTION and
START to take advantage of the new capabilities of
LOOP.

9. Add a feature to stop the turtle. Experiment also
with three new commands, one of which does MAKE
"DIST (- :DIST), another of which does the same for
ANG, and the third of which makes both DIST and
ANG negative. Try to gain enough skill at controlling
the turtle to get it to write your name in cursive script.

Terrapin Logo Tutorial

Words and Lists

INTERACTIVE LANGUAGE

Don't Skip This Section!
MEMBER?, EMPTY!

Right now, please define two procedures, MEMBER?
and EMPTY?, that will be used throughout the re­
mainder of the chapter. (If you have Terrapin Logo
Version 2.0 or beyond, these are already provided as
primitives, so you need not define them yourself and
may skip to the next section.)

Type carefully. Make certain that you leave no space
between : and the word that follows it, and that you do
not leave out the question marks in the procedure
titles.

TO MEMBER? :ELEMENT :OBJECT
IF EMPTY? :OBJECT OUTPUT "FALSE
IF :ELEMENT= FIRST :OBJECT OUTPUT "TRUE
OUTPUT MEMBER? :ELEMENT BUTFIRST :OBJECT

END

TO EMPTY? :OBJECT
OUTPUT ANYOF :OBJECT= [] :OBJECT="

END

It is worth the effort to save these procedures in their
own separate file as well as with the work you are
doing in this chapter. That will allow you to read them
into your workspace whenever you need them without
reading in everything else you have ever worked on.

Terrapin Logo Tutorial W-23

Words and Lists

W-24

For now, these procedures will be explained only as if
they were primitives; we will show how they are to be
used, but not how they work. Later in the chapter, both
will be explained in greater detail.

MEMBER? takes two inputs - a word and a list- and
outputs the value "TRUE if the word is an element of
the list. (You can also give MEMBER? a character and a
word, and it will return "TRUE if the character is part
of the word.)

EMPTY? takes one input and outputs "TRUE if the
input is the empty list or the empty word. We will
explain this in greater detail later on.

To see what MEMBER? does, try the following com­
mands.

MEMBER? "DOG [THE DOG BARKED]
ME.MBER? "CAT [THE DOG BARKED]
MEMBER? "U "AEIOU
MEMBER? "G "AEIOU
MEMBER? "4 "1234XYZ

Your screen should look like this:

MEMBER? "DOG [THE DOG BARKED]
RESULT: TRUE
MEMBER? "CAT [THE DOG BARKED]
RESULT: FALSE
MEMBER? "U "AEIOU
RESULT: TRUE
MEMBER? "G "AEIOU
RESULT: FALSE
MEMBER? "4 "1234XVZ
RESULT: TRUE

Terrapin Logo Tutorial

Words and Lists

If these are not the results you get, check the proce­
dures carefully, character by character, to make certain
that they are exactly as shown above. After you hav&
checked, save the procedures.

Some Friendly Introductions: SENTENCE
(SE), REQUEST (RQ), LPUT, FPUT

If you did project 6 above, you have already seen the
Logo primitive SENTENCE used to combine two
pieces of text into a single sentence. In the procedure
in project 6 the line read

PRINT SENTENCE [THE TURTLE'S PEN IS NOW] :PENPOS

When PENPOS was [DOWN], the effect of that line was
to print

THE TURTLE'S PEN IS NOW DOWN

When PENPOS was [UP], the effect of that line was to
print

THE TURTLE'S PEN IS NOW UP

Define the procedure GREET. You may wish to spell
out PRINT and SENTENCE fully or to abbreviate them.
Both forms of the procedure are shown.

Fully spelled out:

TO GREET :PERSON
PRINT SENTENCE [NICE TO MEET YOU,] :PERSON

END

Terrapin Logo Tutorial W-25

Words and Lists

0

W-26

or abbreviated:

TO GREET :PERSON
PR SE [NICE TO MEET YOU,] :PERSON

END

Run the procedure GREET, giving it a person's name as
input. For example:

GREET [GEORGE]
GREET [GEORGE WASHINGTON]

GREET has a simple behavior. Whatever its input,
GREET prints a sentence composed of the words NICE
TO MEET YOU (with a comma at the end) and that in­
put.

Now we will create a procedure which uses GREET in
a brief friendly conversation. The behavior of the new
procedure will be a bit more complex. It will start up
with no information at all (no input), and will ask the
person to type his or her name. Then it will use GREET
to greet the person. To do this, it must give GREET an
input consisting of whatever the person typed.

Let's write the procedure as we review its behavior. It
needs no inputs, so its title line could be TO FRIENDLY.
It asks the person it meets to type a name: PR [WHAT'S
YOUR NAME?]. It then gives GREET an input con­
sisting of whatever the person types: GREET REQUEST.

REQUEST (abbreviated RQ) is a Logo primitive that
tells a procedure 1) to wait for a person to type a line
and press <RETURN> and 2) to output that line as a
list that can be used by a procedure.

Terrapin Logo Tutorial

Words and Lists

Here, REQUEST's output is used as GREET's input.
Define FRIENDLY.

TO FRIENDLY
PR [WHAT'S YOUR NAME?]
GREET REQUEST

END

To run it, type FRIENDLY (remember, no input!) and
press <RETURN>. When it asks, type your name (and
press <RETURN>). You do not need to type brackets
or other special decorations; just your name will do.
Run it again, but this time, when it asks for your name,
press <RETURN> without typing anything at all.
Your screen will now look something like this:

FRIENDLY
WHAT'S YOUR NAME?
HANNIBAL THE TURTLE
NICE TO MEET YOU, HANNIBAL THE TURTLE
FRIENDLY ,
WHAT'S YOUR NAME?

NICE TO MEET YOU,

REQUEST can return an empty list, indicating that the
person typed nothing, but GREET is not smart enough
to know what to do about that. It would be nicer if
GREET could recognize an empty input and respond
differently.

Here's a version of GREET that does that. We will use
the command EMPTY? to check for bashful typists.

Terrapin Logo Tutorial W-27

Words and Lists

W-28

TO GREET : PERSON
IF EMPTY? :PERSON PR [OH! YOU MUST BE QUITE SHY.] STOP
PR SE [NICE TO MEET YOU,] :PERSON

END

Edit GREET to insert the new line and try it again, as
you did before.

FRIENDLY
WHAT'S YOUR NAME?
HANNIBAL THE TURTLE
NICE TO MEET YOU, HANNIBAL THE TURTLE
FRIENDLY
WHAT'S YOUR NAME?

OH! YOU MUST BE QUITE SHY.

This time GREET is better about handling the blank re­
sponse, but it apparently has a terrible memory! After
all, it has already met HANNIBAL THE TURTLE, and
should have said something more like GOOD TO SEE
YOU AGAIN rather than NICE TO MEET YOU.

Helping the computer remember names brings in a
whole new idea. For GREET to remember, it must be a
learning program. It must keep a list of the people it
has already met, and, when it gets a person's name, it
must be able to check to see whether that name is on its
list. If the person is a member of the list of known
people

IF MEMBER? :PERSON :KNOWN

then GREET should print some appropriate response
and then stop.

Terrapin Logo Tutorial

Words and Lists

PR SE [GOOD TO SEE YOU AGAIN] :PERSON STOP

If the person is not a member of that list, then GREET
should say what it did before. It should also stick the
person's name at the end of the list of known people.
That is accomplished by taking the list out of the box
named KNOWN, tacking the person's name at the end
of it, and placing the result back in the box.

MAKE "KNOWN LPUT :PERSON :KNOWN

LPUT takes two inputs, an object (in this case
PERSON) and a list (in this case KNOWN), and puts
the object in the list as the last element. LPUT ab­
breviates LastPUT, but there is no fully spelled out
name of the primitive. (Its companion FPUT, for
FirstPUT, will put in an appearance later on.)

Here is GREET as it is now designed.

TO GREET :PERSON
IF EMPTY? :PERSON PR [OH! YOU MUST BE QUITE SHY.] STOP
IF MEMBER? :PERSON :KNOWN PR SE [GOOD TO SEE

YOU AGAIN] :PERSON STOP
PR SE [NICE TO MEET YOU,] :PERSON
MAKE "KNOWN LPUT :PERSON :KNOWN

END

Edit it to include the new changes, and when it is
defined, type

FRIENDLY

What happens? Ah! Logo complains that there is no
list of known people.

Terrapin Logo Tutorial W-29

Words and Lists

W-30

Before GREET has met any people, the list may have no
names in it, but it must still exist in order to be
checked. That is why Logo said

THERE IS NO NAME KNOWN

This problem is solved by typing

MAKE "KNOWN[]

Type

PRINT :KNOWN

and notice that just an empty line is printed. Now type

FRIENDLY

again. After it finishes greeting you, type

PRINT :KNOWN

again and note what you see. Play with it for a while,
perhaps by typing

REPEAT 10 [FRIENDLY]

Introduce new people and reintroduce old people.
Type

PRINT :KNOWN

to see what its memory contains. (If the program is not
being friendly, check for errors.)

Terrapin Logo Tutorial

Words and Lists

Finally, some fine points. When the person has been
too shy to type a name, let GREET be a bit pushier. In­
stead of just stopping, it can ask again. How? By run­
ning FRIENDLY before stopping. The line might look
like

IF EMPTY? :PERSON PRINT [DON'T BE SHY. PLEASE TELL
ME.] FRIENDLY STOP

Edit GREET again, making this last change, and exper­
iment with it. Notice that even after you have edited
GREET it remembers the people it had met earlier. Any
time you want to, you can make it forget everybody by
typing

MAKE "KNOWN []

to empty out its list. You can also type

EDIT NAMES

and change the contents of the name KNOWN at will.
When you do that, make sure when you are finished
that all of the left and right brackets match up prop­
erly!

There are two more features that would make GREET
seem really like an intelligent program. Try typing I
DON'T WANT TO TELL YOU, or NONE OF YOUR
BUSINESS, or even MY NAME IS PAUL when
FRIENDLY asks your name. GREET should certainly
not say NICE TO MEET YOU, NONE OF YOUR
BUSINESS.

Terrapin Logo Tutorial W-31

Words and Lists

W-32

It would be nice if GREET could be given enough
knowledge of English to recognize at least these cases
and respond properly. Also, it would be nice if both
GREET and FRIENDLY had a bit more variety in what
they said. You will be able to make both of these im­
provements by the end of this chapter.

First you must learn some new primitives and pro­
gramming techniques.

Interlude: Clearing the Text Screen with
CLEARTEXT

Type CLEARTEXT to Logo. While working on this
chapter you will often need to clear the text screen.
CLEARTEXT has no abbreviation, so you might want
to define an abbreviation.

TO CT
CLEARTEXT

END

After defining CT, and without typing any graphics
commands, mess up the text screen some. Typing the
following lines should create plenty of mess:

ABC
+

Messy enough? Now type CT. Ah, if only all cleaning
up were that easy.

Terrapin Logo Tutorial

Words and Lists

Objects: Producing RESULTs as Output, and
Using Them as Input

The best way to come to understand Logo objects well
is to use them in a variety of contexts. A formal defini­
tion will come later, but some experiments are needed
now.

Type

5 <RETURN>
[APPLES AND ORANGES] <RETURN>
"BEEP <RETURN>

(Don't forget the double-quote at the beginning of
"BEEP.)

In each case Logo responds RESULT: follow,ed by the
object you typed.

5
RESULT: 5
[APPLES AND ORANGES]
RESULT: [APPLES AND ORANGES]
"BEEP
RESULT: BEEP

In two of the cases Logo typed exactly what
you typed. But in the third case, Logo typed
the word BEEP without a double-quote mark.

Here is the explanation. The object you typed
was the word BEEP. The double-quote mark
was merely to tell Logo that you were typing
an object and not the name of a procedure.

Terrapin Logo Tutorial W-33

Words and Lists

W-34

Typing "FRIENDLY (with the quote-mark)
will have the same effect. Typing FRIENDLY
(without the quote-mark) will run the proce­
dure that you wrote in the last section.

The double-quote is not part of the object; it is
just a marker. Neither numbers nor lists can
be procedure titles, so Logo does not need any
special markers to help it recognize those as
objects.

Also, words that are already inside lists, like
APPLES or AND, need no special markers.
Logo will not try to run them unless you
explicitly tell it to.

If an object is "given to" Logo in immediate mode,
Logo announces it with the word RESULT:. If an object
is "given to" PRINT as an input, PRINT prints the ob­
ject on the screen.

PRINT, too, changes the appearance of what you type
slightly. Using the same three examples, PRINT 5,
PRINT [APPLES AND ORANGES], and PRINT "BEEP,
both of the last two are printed without their punctua­
tion.

PRINT doesn't show the marker or the outer brackets
that surround a list, but merely the object and the list
elements themselves.

Even though we have been playing with a number (5),
a list ([APPLES AND ORANGES]), and a word (BEEP)
- all abstractions-we think of these very concretely,

Terrapin Logo Tutorial

Words and Lists

as if they were solid objects that can be tossed back and
forth among players in a game.

This metaphor is very useful in Logo programming.
Procedures are the players. You make up the rules of
the game, deciding what the behavior of each proce­
dure will be, what object (if any) a procedure should
create, and who should receive the object after it is
made.

There are ways of giving objects to Logo in immediate
command mode other than by placing them there
yourself. You can let a procedure create them and place
them there.

At the beginning of the section, you typed MEMBER?
"G "AEIOU and Logo announced that the object
FALSE was given to it as a result. Here are some other
ways of getting procedures to hand objects to Logo.

RANDOM 100
FIRST :KNOWN

The primitive RANDOM outputs a random number
from O up to (but not including) its input. FIRST out­
puts the first element of the object that is its input. (In
this case, the object is a list from the box named
KNOWN that you created earlier in the chapter.)

In the next two lines are two other primitives that out­
put objects. It may be harder to recognize the primi­
tives this time, because you are probably not used to
thinking of them as primitives.

5+6
:KNOWN

Terrapin Logo Tutorial W-35

Words and Lists

W-36

The first primitive is the+. It takes two inputs, one on
each side of it, and outputs their sum if they are num­
bers.

The second primitive is the: (which is a special kind of
abbreviation for THING). It takes one input, attached to
it on the right, and outputs the object that is found in
the box of that name. (The box, KNOWN, was created
earlier as part of the FRIENDLY program.)

There are only two ways of creating objects. You can
put them there, yourself, or a procedure or primitive
can create them.

Some primitives create objects as output and others
don't. For example, if you type FIRST 3 7, Logo an­
nounces the object that FIRST outputs. (What is it?)
But if you type PRINT 37, the object simply appears on
the screen and cannot be used by other commands.

Some primitives require objects as input and others
don't. If a primitive does need an object as input, it
does not care whether that input is put there by you, or
is the result of running another primitive.

So, in the command PRINT FIRST :KNOWN, the object
that PRINT needs as its input is created by FIRST and
supplied as its output.

Writing Procedures that Create and Output
Objects: OUTPUT

Except for the two procedures MEMBER? and
EMPTY? with which we began this section, you have
never written a procedure that creates an object and
outputs it for another procedure to work with. Such a

Terrapin Logo Tutorial

Words and Lists

procedure is vastly more powerful and flexible than
anything we have discussed up to now.

To begin, let's define the procedures TEN and
DOUBLE.

TOTEN
OP7 + 3

END

TO DOUBLE :NUMBER
OP 2 * :NUMBER

END

Now, typing TEN to Logo gets the response RESULT:
10. TEN can be used in computations.

Type

PRINT DOUBLE TEN

The OUTPUT command (or its abbreviation, OP) tells
these procedures to stop and "output an object" or "re­
turn a value" or "produce a result." To see what all this
means, try the following experiments by typing these
lines to Logo:

10
TEN
DOUBLE 5
5 * DOUBLE 1

When you typed the number 10, you were handing
Logo the object 10 directly. The object 10 has the value
10 or results in a 10 lying around. Logo announces that
with the message, RESULT: 10.

Terrapin Logo Tutorial W-37

Words and Lists

W-38

When you typed the procedure name TEN, it com­
puted a value and then it handed the value (the object
10) to Logo. Similarly, when you typed the procedure
name DOUBLE, you handed it the object 5 to work
with. It computed the value 10, and handed that back
as the result.

In both of these cases, you may think of the procedures
as having replaced themselves by the value they out­
put. That makes the last line especially clear. If
DOUBLE 1 replaces itself with the value 2, then the
line becomes 5 * 2.

We often use the word "object" to refer
equally to words (including such things as
numbers and letters) and lists (including
simple sentences or complex data structures).

We do this because Logo can easily combine
words and lists to make other words and lists,
break words and lists into pieces, or pass
words and lists back and forth between pro­
cedures as if they were concrete, solid ob­
jects.

When we need to specify what kind of object,
we refer to "numbers" or "words" or "lists,"
but the word "object" refers to them all.

The word "value" sometimes sounds more
natural than "object" when we are referring
to the result of some computation, but there is
really no important difference between the
words.

Terrapin Logo Tutorial

Words and Lists

Here is a more useful application of the same sorts of
procedures.

TO Pl
OUTPUT 3.14159

END

TO CIRCUMF :DIAMETER
OP Pl * : DIAMETER

END

Having a procedure that figures out the circumference
of a circle, given its diameter, has a practical applica­
tion in Logo. Among other jobs, it can be used in a
graphics procedure to draw circles of a given size.

All circles in Logo are drawn by drawing short line
segments, turning a little, and repeating the process
until the circle closes. The smaller the line segments,
of course, the smaller the circle.

But how do we determine the length of the segments if
we want a circle of a very specific size? If the circle is
composed of twenty segments, then each one is one­
twentieth of the circumference. If it is drawn with
twelve segments, then each is one-twelfth of the cir­
cumference.

Clearly, then, to draw a circle of a specific diameter,
we must first know the circumference . Then we can
divide it into equal parts, and repeatedly draw one
of these parts and turn the appropriate amount.

TO CIRCLE :DIAMETER
ARC 20 (CIRCUMF :DIAMETER) /20

END

TO ARC :SEGMENTS :CHORD
REPEAT :SEGMENTS [FD :CHORD RT 18]

END

Terrapin Logo Tutorial W-39

Words and Lists

W-40

Try

CIRCLE 40 RT 180 CIRCLE 40

The following definition of ARC gives a
slightly more symmetrical placement of the
circles on a vertical line. Figure out why.

TO ARC :SEGMENTS :CHORD
FD :CHORD/2
RT 18
REPEAT :SEGMENTS - 1 [FD :CHORD RT 18]
FD :CHORD/2

END

It is useful to have a definition of CIRCLE that
curves to the left as well as this one that turns
to the right. You can also define half- and
quarter-circles using the same ARC proce­
dure.

The objects these procedures manipulated were all
words -- in fact, only numbers. Now back to lists.
Define these two procedures.

TO PEOPLE
OUTPUT [SANDY CHRIS [THE TURTLE] DANA LEE

PAT DALE]
END

TO ACTIONS
OUTPUT [LOVES [DREAMS ABOUT] KISSED

HATES [CANT STAND] LIKES]
END

Terrapin Logo Tutorial

Words and Lists

We have chosen the names PEOPLE and
ACTIONS as good descriptions of the nature
of the procedures. You will be using these
procedures often, so you might like to choose
names that are shorter or easier to type, like
PPL and ACTS, or NOUNS and VERBS, or
just N and V.

As you develop more complex programs, it
will become especially important that you
choose procedure titles and variable names
that help you remember what their purpose
is. The best policy is to choose names that are
easy in two ways: easy to type and easy to re­
member.

These procedures contain instruction lines that are too
long to fit neatly on the screen, but you should con­
tinue typing normally, without pressing <RETURN>
when you get to the edge of the screen. Logo will place
a ! at the end of the screen to indicate that your line
continues past there, but will continue to show the rest
of your typing on the next line.

Type these procedures accurately, being particularly
careful about getting the left and right brackets in the
correct places. (Notice that they are the square brack­
ets, and not parentheses! The brackets are typed as
SHIFT-N and SHIFT-Mon the Apple II and Apple II+.)

Once you are in the editor, you can type any
number of procedures before pressing
CTRL-C to define them. (But remember you
must type END after each procedure before

Terrapin Logo Tutorial W-41

Words and Lists

W-42

starting the next one.) In this case it makes lit­
tle difference whether you define the proce­
dures one by one or both together. Sometimes,
though, you will find it very convenient
to be able to look at one procedure while you
are defining another.

The only behavior of these procedures is to output a
list. PEOPLE outputs a list of seven names. Six of those
names are words, but one of them, THE TURTLE, is it­
self a list of two words.

ACTIONS also outputs a list. That list contains only six
elements, four of which are single words and two of
which are lists of two words each.

To demonstrate that these procedures output objects,
type PEOPLE to Logo. Then type PRINT ACTIONS.
Your screen should look something like this.

PEOPLE
RESULT [SANDY CHRIS [THE TURTLE] DANA L
EE PAT DALE]
PRINT ACTIONS
LOVES [DREAMS ABOUT] KISSED HATES [CAN'T
STAND] LIKES

When Logo cannot fit everything onto one line, it
breaks the line where it must, and continues on the
next line. (Note that a! does not appear at the end of the
first line in immediate mode, unlike in edit mode.)

Terrapin Logo Tutorial

Cry.

Words and Lists

Making One Procedure's Output into Another
Procedure's Input: OUTPUT (OP), FIRST,
BUTFIRST (BF), LAST, BUTLAST (BL),
SENTENCE (SE), WORD

Clear the text screen.

What object does FIRST PEOPLE output? (Type FIRST
PEOPLE to check if you want to.)

Logo also has a procedure BUTFIRST which outputs
all but the first element of its input. Type BUTFIRST
PEOPLE to see the object it outputs. And what is the
FIRST of that object? Type FIRST BUTFIRST PEOPLE
to see.

What object would BUTFIRST output if its input is the
object created by BUTFIRST PEOPLE. (In other words,
what object is created by BF PEOPLE, and what is the
BF of that?) Type BF BF PEOPLE or BUTFIRST
BUTFIRST PEOPLE to check.

And what is the FIRST of that object? Type FIRST BF
BF PEOPLE to see.

Remember to clear the text screen whenever it will
help you see what you are doing.

Here are some more experiments to do with PEOPLE
and ACTIONS. They are all to get you familiar with
some new primitives and passing objects between
them. You may type abbreviated forms such as PR, SE,
and BF, or fully spelled out forms, whichever you pre­
fer, but don't just sight-read these experiments. Do
each of them and compare the results you get to the
comments written before or after the experiments.

Terrapin Logo Tutorial W-43

Words and Lists

W-44

Logo can copy an object from either end of a list,

FIRST ACTIONS
LAST ACTIONS

and from either end of a word

PR FIRST "CAT
PR LAST "CAT

When FIRST or LAST receive a word as in­
put, they output the corresponding (first or
last) letter of the word. When they receive a
list as input, they output the corresponding
element of the list.

BUTFIRST (BF) and BUTLAST (BL) output
all but what FIRST and LAST output. It is im­
portant to remember (and a common source
of bugs for those who forget) that the BF or BL
of a list is always a list. Thus, the BUTFIRST
of [FD 30] is not 30, but [30].

FIRST of ACTIONS produced an object, a result. Logo
can manipulate that object, taking its FIRST or LAST
element, just as it can manipulate any other object.

PR FIRST FIRST ACTIONS
PR LAST FIRST ACTIONS

Since FIRST ACTIONS is LOVES, its FIRST is Land its
LAST is S.

Terrapin Logo Tutorial

Words and Lists

Type:

PR SENTENCE PEOPLE ACTIONS
PR SE FIRST PEOPLE FIRST ACTIONS

SENTENCE (abbreviated SE) glues any two objects to­
gether into a sentence. The sentence of the lists output
by PEOPLE and ACTIONS is a long one. The sentence
of the first elements of those lists is SANDY LOVES.

Type:

PR (SE LAST PEOPLE LAST ACTIONS FIRST PEOPLE)

By surrounding SENTENCE and its inputs with par­
entheses, you can force SENTENCE to take more (or
fewer) than two inputs. This is often very important in
interactive language programs.

The next series of experiments is particularly impor­
tant as it forms the basis for the vast majority of the
procedures you will use most in manipulating words
and lists. It is, for example, at the heart of the
MEMBER? procedure that you defined at the very be­
ginning of this chapter. Clear the text screen. Do each
experiment and note its behavior.

PEOPLE
BF PEOPLE or BUTFIRST PEOPLE
BF BF PEOPLE
BF BF BF PEOPLE

Be certain you see the pattern in the results of the pre­
vious four experiments before going on. Now predict
the results of each of these experiments and then check
your prediction by running the experiment.

Terrapin Logo Tutorial W-45

Words and Lists

W-46

FIRST PEOPLE
FIRST BF PEOPLE
FIRST BF BF PEOPLE
FIRST BF BF BF PEOPLE

Similar patterns hold for LAST and BUTLAST (BL).

PR BUTLAST ACTIONS or PR BL ACTIONS
PR LAST BL ACTIONS

Finally, you can combine a whole bunch of these oper­
ations into one command.

PR (SE FIRST BF BF PEOPLE LAST BL ACTIONS [ME])

SENTENCE glues parts together to make a sentence.
We added [ME] to try to add some interest.

Logo also provides the primitive WORD, which glues
parts together to make a word. Try this:

PR WORD "C BF "SANDY

Here are some more complicated expressions using
WORD.

PR WORD BL FIRST PEOPLE "WICH
PR WORD BL FIRST ACTIONS LAST BL PEOPLE

Subprocedures for Cleaner Programming

The primitives that Logo provides give immediate ac­
cess to the first or last element of a list, or to the first or
last character of a word, but what about the second,
third, or other elements?

Terrapin Logo Tutorial

Words and Lists

One set of procedures to output the SECOND, THIRD,
FOURTH, and FIFTH elements of an object is based on
the experiments you tried above. Type these in, and try
them out with the projects suggested.

TO SECOND : OBJ
OP FIRST BF :OBJ

END

TO THIRD :OBJ
OP FIRST BF BF :OBJ

END

TO FOURTH : OBJ
OP FIRST BF BF BF :OBJ

END

TO FIFTH :OBJ
OP FIRST BF BF BF BF :OBJ

END

PR (SE FOURTH PEOPLE THIRD ACTIONS THIRD PEOPLE)
PR (SE SECOND PEOPLE FIFTH ACTIONS THIRD PEOPLE)

The new procedures allow you to write equivalent
commands in different ways. For example, the two fol­
lowing commands have the exactly the same effect:

PR (SE FOURTH PEOPLE SECOND ACTIONS FIFTH PEOPLE)
PR (SE FIRST BF BF BF PEOPLE FIRST BF ACTIONS FIRST BF

BF BF BF PEOPLE)

... but there are important differences. Not only is the
first shorter to type, but it is also much more under­
standable. Writing understandable programs is a mark
of good programming.

Terrapin Logo Tutorial W-47

Words and Lists

W-48

A Generalization Using Recursion: ITEM

Although these new procedures vastly simplify both
the look and the typing of some list manipulations,
they have some drawbacks. The most obvious is that in
order to get PAT out of the PEOPLE list, we'd need a
procedure SIXTH, and even if we wrote that , there
would always be some list that was even longer.

What we really need is one single procedure that can
retrieve any member of a list. (If you have version 2.0,
you can use the primitive ITEM to do this. Don't skip
ahead, though.)

As a first step toward figuring out how to write it, let us
carefully describe its behavior in English. Let us call
this procedure NTH (as in fourTH, sixTH, seven TH).
We need to tell NTH two things: what number element
to find, and what object to choose it from. Perhaps the
whole title line will look something like this:

TO NTH :N :OBJECT

If N is 1, the procedure should just output the first ele­
ment of the object. That instruction would look like
this in Logo.

IF :N = 1 OUTPUT FIRST :OBJECT

and the whole procedure, so far, would look like this:

TO NTH :N :OBJECT
IF :N = 1 OUTPUT FIRST :OBJECT

END

Terrapin Logo Tutorial

Words and Lists

Create this procedure. At this stage you can use the
procedure to get the first (but only the first) element of
an object. Try typing PR NTH 1 PEOPLE, and make
sure it prints SANDY.

That is the simplest situation. To come up with a good
way of describing the other situations, let us examine
them one by one. IfNis 2 then we want NTH to output
the first element of the next shorter object (the
BUTFIRST of the object). The first element of an object
is something NTH knows how to output, so it can do
the job itself. In Logo, that might be translated this way:

IF :N = 2 OUTPUT NTH 1 BF :OBJECT

It will turn out that there is a neater way of doing
things, but, for now, add that line to your procedure,
too, and check to see that PR NTH 2 PEOPLE causes
Logo to print CHRIS. You might also check PR NTH 1

ACTIONS and PR NTH 2 ACTIONS.

What if N is 3? NTH already knows how to find the
second element of an object. To find the third element,
we could simply find the second element in the BUT­
FIRST of the object. In Logo, this is translated:

IF :N = 3 OUTPUT NTH 2 BF :OBJECT

If we continued in this way, we might add a bunch of
instructions that look like this:

IF :N = 4 OUTPUT NTH 3 BF :OBJECT
IF :N = 5 OUTPUT NTH 4 BF :OBJECT
IF :N = 6 OUTPUT NTH 5 BF :OBJECT
IF :N = 7 OUTPUT NTH 6 BF :OBJECT

Terrapin Logo Tutorial W-49

Words and Lists

W-50

But this does not solve the original problem. N might
still be some number larger than we account for. For­
tunately, there is a generalization we can make. In all
of the cases where N is not 1, the procedure figures out
what to do by looking for element N-1 in the BUTFIRST
of the object.

We will repeat the logic:

TO output the NTH element of an object we need to
know N and the OBJECT.

TO NTH :N :OBJECT

If N = 1, we want to OUTPUT the FIRST of the OBJECT.

IF :N = 1 OP FIRST :OBJECT

In every other case, we want to OUTPUT the N-1
element (found by using NTH with an input of N-1) of
the BUTFIRST of the OBJECT.

OP NTH :N - 1 BF :OBJECT

Thus, the procedure might look like this (with
OUTPUT abbreviated as OP):

TO NTH :N :OBJECT
IF :N = 1 OP FIRST :OBJECT
OP NTH :N -1 BF :OBJECT

END

Edit NTH to make your copy look like this new version
and try it out with values of N ranging from 1 to 7 and
the PEOPLE list, or with values ranging from 1 to 6 and
the ACTIONS list. It even works on words.

Terrapin Logo Tutorial

Words and Lists

Remember that ITEM, which does the same thing as
NTH, is provided as a primitive in Terrapin Logo ver­
sion 2.0.

Projects

10. Write a procedure that takes a number from 1 to
26 as input and outputs the corresponding letter of the
alphabet.

11. Using the procedure you wroteinproject 10, write
a new procedure that takes a list containing a number
from 1 to 26 and again outputs the corresponding letter
of the alphabet.

12. Using the procedure you wrote in project 11, write
a new procedure that takes a list of exactly two num­
bers ranging from 1 to 26 and outputs a two-letter word
with the corresponding letters of the alphabet.

13. Using the procedure you wroteinproject 12, write
a new procedure that takes a list of exactly three num­
bers ranging from 1 to 26 and outputs a three-letter
word with the corresponding letters of the alphabet.

14. Using the reasoning suggested in this chapter,
write a new procedure that takes an arbitrary length
list of numbers ranging from 1 to 26 and outputs the
word composed of the corresponding letters of the
alphabet.

15. Using PEOPLE, ACTIONS, NTH (or ITEM), and
Logo primitives PR, SE, and RANDOM, write a proce­
dure that prints random sentences. (Write subproce­
dures that do parts of the job and then combine them.)

Terrapin Logo Tutorial W-51

Words and Lists

W-52

Some Important Primitives Used in this
Chapter

The following summary gives a brief synop­
sis of some commonly used primitives. It is
by no means an exhaustive listing. If you
don't find what you want, consult the Tech­
nical Manual.

The primitives that manipulate Logo objects can be
classified into four categories:

1) Those that assemble objects
2) Those that decompose objects
3) Those that determine the nature of objects (i.e. Pre­

dicates)
4) Those that pass objects back and forth among pro­

cedures, to and from variable names, and between
the user and the procedure.

Primitives that assemble Logo objects:

WORD- Creates a word (a set of contiguous charac­
ters) from two inputs. Inputs may be words, charac­
ters, or procedures that output words/characters.

SENTENCE (SE)-Creates a list from two inputs.
Inputs may be words, lists, or procedures which
output words/lists. Unlike LIST, SENTENCE returns
a list containing no sub-lists.

LIST- Like SENTENCE, creates a list from two
inputs. If either input is a list, it will appear as a
sub-list in the newly created list.

Terrapin Logo Tutorial

Words and Lists

FPUT- Creates a list from two inputs, the second of
which must be a list. The new list created by FPUT
consists of the first input (a word or list) followed by
the elements of the second input.

LPUT- Same as FPUT, except that LPUT creates a
list consisting of the elements of the second input
followed by the first input.

Primitives that decompose Logo objects:

FIRST-Outputs the first element of its input. If the
input is a word, FIRST outputs a character; if the
input is a list, FIRST outputs the first element of the
list.

BUTFIRST (BF) -Takes one input and outputs all
but the first element.

LAST, BUTLAST (BL) - Corresponding operations
for last element of input.

COUNT- Takes a single input, a word or a list.
Outputs the number of characters in the word, or the
number of elements in the list. (Remember that Logo
treats a sub-list as a single element of the larger list.)

ITEM- Takes two inputs; the first input must be a
number, and the second must be a word or list. Out­
puts the nth element of the second input.

Note that COUNT and ITEM are not primitives in
Logo versions prior to version 2 .0.

Terrapin Logo Tutorial W-53

Words and Lists

W-54

Primitives that determine the nature of an object:

WORD?- Outputs "TRUE if the input is a word;
otherwise, outputs "FALSE.

LIST? - Outputs "TRUE if the input is a list; other­
wise, outputs "FALSE.

NUMBER? - Outputs "TRUE if the input is a
number; otherwise, outputs "FALSE.

EMPTY?-Outputs "TRUE if the input is the empty
list or the empty word([] or"); otherwise, outputs
"FALSE.

MEMBER?-Takes two inputs. Outputs "TRUE if
the first input is an element of the second input;
otherwise, outputs "FALSE.

Note that MEMBER? and EMPTY? are not primi­
tives in Logo versions prior to version 2.0.

Primitive that passes an object from one procedure to
another:

OUTPUT (OP) - Causes a procedure to STOP and
output an object to another procedure or primitive.

Primitives that pass objects to and from variable
names:

MAKE-Takes two inputs. The first input becomes
the name associated with the value of the second in­
put.

Terrapin Logo Tutorial

Words and Lists

THING-Takes a variable name as an input. Out­
puts the value associated with the name. A colon(:)
prefixed directly to a name is the abbreviation for
THING. Thus, THING "A is the same as :A.

Primitives that pass objects to and from the user:

REQUEST (RQ)-Waits for the user to type an input
line followed by <RETURN>. Outputs the input
line as a list to the calling procedure.

READCHARACTER (RC) - Takes a character typed
at the key board and outputs it as a word to the call­
ing procedure. (Remember that RC does not wait for
you to type <RETURN>.)

RC? - Outputs "TRUE if a keyboard character is
pending; otherwise, outputs "FALSE.

PRINT (PR) - Prints its input on the screen (or on
the printer, if specified) followed by <RETURN>.
Input may be a word or a list. Notice that PRINT
strips away all brackets and single-quotes.

PRINTl - Prints its input on the screen without
<RETURN>. Otherwise, exactly like PRINT.

Also, note that certain Logo primitives can take extra
inputs if the entire command is enclosed in paren­
theses, e.g. (PRINT :LENGTH :HEIGHT :WIDTH).
The primitives are LIST, WORD, SENTENCE, PRINT,
and PRINTl. In this sJtuation, LIST and SENTENCE
may also take one input instead of two.

Terrapin Logo Tutorial W-55

Words and Lists

W-56

When using parentheses to indicate extra inputs, be
sure to put a space before the closing parenthesis.
Otherwise, Logo may assume that the parenthesis is
part of the last input and complain that

(primitive) NEEDS MORE INPUTS

Definitions of Words and Lists
CHAR

We have not yet carefully defined Logo's two types of
objects, words and lists. A word, the simplest data ob­
ject, consists of any continuous string of characters.
You've seen several already; here are some other
examples:

90
3.1416
HI
ANTIDISESTABLISHMENTARIANISM
HENRY.THE.BTH
xvz
R2D2

As you can see, numbers are Logo words, long and
short English words are Logo words, and even arbitrar­
ily spelled symbols can be Logo words. Experience has
already taught you that when you type several Logo
words, spaces separate them instead of becoming part
of them.

If you need words that contain odd characters like
<SPACE> in them, you can surround them with
single-quotes. In the experiment that follows, type
carefully, remembering to put in all the double-quote

Terrapin Logo Tutorial

Words and Lists

characters and single-quote characters just as they are
shown and to type a space between the first A and the
B. Clear the text screen and type

"'A BC'
PRINT "'A BC'
[A BC]
PRINT [A BC]
LAST "'A BC' and LAST [A BC]

Your screen should look like this:

'"A BC'
RESULT: 'A BC'
PRINT "'A BC'
ABC
[A BC]
RESULT: [A BC]
PRINT [A BC]
ABC
LAST II 'A BC'
RESULT: C
LAST [A BC]
RESULT: BC

Notice that PRINT and other primitives (except OUT­
PUT) strip away brackets and single-quotes.

The following procedure ODDWORD creates a word of
three other words, two of which have spaces in them.
Define the procedure, typing carefully. Be sure to type
p space before the second parenthesis. (See the preced­
ing glossary if you're not sure why.)

Terrapin Logo Tutorial W-57

Words and Lists

W-58

TO ODDWORD
OP(WORD"'ABA' "'BYB' "OY)

END

Now try these experiments with the odd word that
ODDWORD outputs.

PR ODDWORD
PR NTH 1 ODDWORD
PR NTH 2 ODDWORD
PR NTH 3 ODDWORD
PR NTH 10 ODDWORD
PR LAST ODDWORD
PR WORD NTH 2 ODDWORD ODDWORD
PR WORD "'<space><space><space>' ODDWORD

Even though the word that ODDWORD outputs con­
tains spaces, it is a word. Even though it looks like a list
when printed, it behaves like a word. The LAST of it is
the letter Y, not the word BOY.

A space can be typed, and the single-quote character
allows you to insert that space inside a word, but there
are some characters that cannot be typed into a proce­
dure at all. An example is the <CTRL> G character. If
you were to try typing

PR '"<CTRL> G'

to Logo, it would say STOPPED! before you reached
the second single-quote. But there is a way to include
even strange characters like that in a word. The Logo
primitive CHAR outputs the character which corre­
sponds to the ASCII code it is given.

Terrapin Logo Tutorial

Words and Lists

The ASCII codes for <CTRL> A through <CTRL> Z
are 1 through 26. The codes for capital A through capi­
tal Z are 65 through 90, or 64 larger. Thus, you will get
the same effect if you type

PR CHAR 65 or PR "A

Empty words - words that contain no characters at
all, not even a space- also exist. When typing a com­
mand to Logo, one way to indicate you are referring to
the empty word is by following a" with a <SPACE> or
<RETURN>. (The <SPACE> separates the word from
what follows, and is not part of the word.)

See, for example, the procedure EMPTY?, which tests
to see if its input OBJECT is either the empty word or
the empty list.

A list is an ordered collection of Logo objects. Its ele­
ments can be words or other lists. Here are some exam­
ples of lists:

[COLORS [BLUE GREEN YELLOW RED] SIZES [LARGE
SMALL]]

[555-2561 617-4436 918-9961]
[[FD 70] [RT 120] [FD 70] [RT 120] [FD 70] [RT 120]]
[]

The matched left and right square-brackets show the
scope of a list. The first list contains four elements, the
second and fourth of which are lists themselves and
thus are grouped together with the square-brackets.

Terrapin Logo Tutorial W-59

Words and Lists

W-60

The second list contains three elements, each a word
denoting a telephone number. The third list contains
six sublists, each of which contains a Logo command.
The fourth list is empty; it contains no elements at all.

Spaces separate elements of the list. The number of
spaces signifies nothing, and in fact, more than one
space between two elements will be ignored by Logo.

Some Details of Programming in Logo:
Variables, Passing Objects, Logo's Way of
Understanding Commands, and Logo's
Messages When It Doesn't Understand

Type this operation to Logo:

WORD "CAT "S

As has happened frequently in this chapter, we have
suggested you type somehing to Logo that caused it to
respond with the word "RESULT: " followed by the
result of the operation. Logo includes the message
RESULT: to remind you that it has computed a result,
but you have not told it what to do with the result.
Compare the effect of this command:

PR WORD "CAT "S

Both times, the word CATS appeared, but the second
time you told Logo what to do with the result (to print
it) and so that is what it did.

You can predict the result of these operations:

WORD "HORSE "S
WORD "DOG "S

Terrapin Logo Tutorial

Words and Lists

In each case, you typed

WORD somethingorother "S

suggesting a procedure that might look a bit like this:

TO PLURAL :SOMETHINGOROTHER
WORD :SOMETHINGOROTHER "S

END

Of course, since names of procedures and variables are
arbitrary, you could choose names that are easier to
type. NOUN, or IT might be good choices for the vari­
able name.

TO PLURAL :NOUN
WORD :NOUN "S

END

Why did we switch from quote CAT and quote DOG
and quote HORSE to colon NOUN? When you typed

WORD "CAT "S

CAT was the word you wanted to attach the S to. In the
procedure, the word NOUN only stands for the word
you want to attach the S to, but it is not the real word.
You still want the procedure to work on words like
CAT, DOG, and HORSE.

Remember the tiresome joke?

Terrapin Logo Tutorial

Dale: Bet you've never heard of the word
''antidisestablishmentarianism!''

Dana: Of course I have.
Dale: Pooh! I bet you can't even spell it.

W-61

Words and Lists

W-62

Dana: Of course I can.
Dale: Go ahead. Let's see if you can spell it.
Dana: A, n, t, i, d, i ...
Dale: Hah! Wrong already! "It" is spelled

"it."

Dale is playing with the confusion between
what a word is and what it stands for. When
you speak, you change your tone of voice
when you need to make that clear. Consider,
for example, how you might say the words

"Please say your name"

to Dale if you really wanted Dale to answer
"your name" instead of "Dale"? When you
write, you use quotation marks to help make
your meaning clear. And when you program
in Logo, the quotation marks again mean
"take this word literally" as they do in writ­
ten English.

However, Logo's rule is different from the
rule in English: in Logo no quotation mark is
placed after the quoted word and that one
quotation mark applies to only one word.
When you need to indicate that more than
one word is to be taken literally, you must
either separately quote each word, this way

"YOUR "NAME

or enclose all of the words in square brackets,
this way

[YOUR NAME]

Terrapin Logo Tutorial

Words and Lists

Now type in the procedure:

TO PLURAL :NOUN
WORD :NOUN "S

END

To run it, type PLURAL followed by a quoted word like
this:

PLURAL "CAT
PLURAL "HORSE

Your screen will look like this:

PLURAL "CAT
YOU DON'T SAY WHAT TO DO WITH CATS, IN LINE

WORD :NOUN "S
AT LEVEL 1 OF PLURAL

Inside the procedure PLURAL, Logo has created an ob­
ject and does not know what to do with that object. It is
telling you what problem it was having and exactly
where it encountered the problem.

Logo tells which of your procedures confused it (in
this case, only one of your procedures, PLURAL, was
involved, but there might have been more).

It tells the line in which it got stuck. And it tells the
"level" at which it got stuck- how many procedures
it was already trying to execute when the error
occurred.

Terrapin Logo Tutorial W-63

Words and Lists

W-64

To see the meaning of level, create another procedure
that runs PLURAL.

TO TRYLEV
PLURAL "CAT

END

Try it.

TRYLEV
YOU DON'T SAY WHAT TO DO WITH CATS, IN LINE

WORD :NOUN "S
AT LEVEL 2 OF PLURAL

Note that the level is now 2. TRYLEV is the first level,
the command you typed to the "top level" of Logo.
Since PLURAL is "within" TRYLEV, its level is 2.
Level can be useful information when debugging
complex programs.

Before you can tell Logo what to do with the object it
creates inside PLURAL, you have to decide that for
yourself. You know how to tell Logo to PRINT the re­
sult immediately, but perhaps you want to do some­
thing more complicated with the plural word before
printing it.

Suppose, for example, you want to create a procedure
that brags about your pet like this:

I LIKE some-pet-or-others.
some-pet-or-others ARE GREAT,
BUT MY some-pet-or-other IS THE BEST!

Terrapin Logo Tutorial

Words and Lists

In the second sentence, we want the plural to be tucked
into the sentence before it is printed, and in the first
sentence we need to do two things before printing -
attach a period to the plural and then stick the whole
thing at the end of the sentence.

Since we want to use the object that PLURAL creates in
different ways, it would be nice if PLURAL would
hand the object back to us to manipulate further as we
wish. This is accomplished by telling it to OUTPUT
the object.

Edit PLURAL to insert the word OUTPUT (or its ab­
breviation OP) in the proper place. The procedure will
now look like this:

TO PLURAL :NOUN
OUTPUT WORD :NOUN "S
PRINT [DONE]

END

Now run it again as you did before.

PLURAL "CAT
PLURAL "HORSE

This time, your screen should say:

PLURAL "CAT
RESULT: CATS
PLURAL "HORSE
RESULT: HORSES

That is precisely what we want. PLURAL has com­
puted the result, and we are still free to decide what to
do with it.

Terrapin Logo Tutorial W-65

Words and Lists

W-66

But what became of the DONE that we told PLURAL to
print? OUTPUT tells a procedure not only to return a
value, but to stop immediately. If it is important that
PLURAL announce when it is done, it must print
DONE before it is done. (It can't do anything after it is
done!)

However, if PLURAL is to be used inside another pro­
cedure, perhaps one that brags about pets, PLURAL
probably should not print anything anyway. It should
do its job quietly, and let the superprocedure that uses
it decide what to print and when.

Edit PLURAL again to remove the useless line PRINT
[DONE].

Try to predict what each of these commands will do,
and then type them to see how each works:

PR SE [I LIKE] PLURAL "CAT
PR WORD "TOM PLURAL "CAT
PR WORD PLURAL "CAT".
PR SE [I LIKE] WORD PLURAL "CAT".

Terrapin Logo Tutorial

Words and Lists

How Logo Interprets a Command

It is worth spending a moment to understand how
Logo interprets a command as complex as the last one. 4 SE [I LIKE] WORD PLURAL "CAT "

PR input

I
SE input1 input2

I I
(I LIKE] WORD input1 input2

I
PLURAL input

I
"CAT

Logo reads from left to right, but as you will see by fol­
lowing the diagram above and the discussion below,
PLURAL is the first operation to be executed.

First Logo sees the word PR. That means that it will
have to print whatever follows. So before executing
PR, Logo must read further to see what follows . PR
must wait.

Instead of finding an object, Logo encounters another
operation, SE. Furthermore, this primitive requires
two inputs of its own, so again Logo must read on to
find them. PR waits for SE and SE waits for its inputs.

Terrapin Logo Tutorial W-67

Words and Lists

W-68

Logo finds the object [I LIKE] as a first input to SE. But
SE needs another, so Logo reads further.

Next it finds WORD. Again, this is not an object but an
operation. As before, this primitive requires two in­
puts, so Logo reads still further.

The next thing it finds is, again, not an object but
another operation, PLURAL. PLURAL requires one
in put, so Logo must still look further.

This time Logo finds an object, "CAT- and since
PLURAL needs only the one input, it can now exe­
cute. It outputs CATS which becomes the first input to
WORD. Still, WORD requires a second input which
Logo has not yet seen. So, now- after executing
PLURAL "CAT-Logo continues to read through the
original line and finds the object". at the end of it.

Logo has now found two objects - CATS and . - to
use as inputs to WORD. WORD can now execute, out­
putting CATS., which becomes the second input to
SE. SE can now execute, outputting [I LIKE CATS.]
which becomes the input to PR. PR can now execute,
printing (not outputting!)

I LIKE CATS.

This left-to-right reading but (seemingly) right-to-left
execution can be confusing sometimes. Both of the fol­
lowing command lines will cause Logo to complain.
Try them out to see when and where the complaint oc­
curs, and then use an analysis like the one given above
to understand what Logo was doing when it had to
stop.

Terrapin Logo Tutorial

Words and Lists

PR SE [I LIKE] WORD PLURAL [CAT] ".
PR SE [I LIKE] WORD PLURAL "CAT [.]

Sometimes the complexity of a line makes it difficult
to understand even by the person who first wrote it.
Before reading on, try to predict what the following
Logo command will do. Then type it in to try it, and
read on.

PR SE WORD LAST PLURAL "CAT "CAT "CAT

When you write complex Logo commands - espe­
cially if you are writing them for other people to
understand, but often even for yourself-it can be a
good idea to use parentheses to help group the parts of
the command. Logo will interpret the command ac­
cording to its rules equally easily with or without the
parentheses, but people find the added punctuation
helpful.

You should decide for yourself how much parenthesiz­
ing to do. Sometimes, using the maximum is best. At
times, the maximum looks too cluttered, and just a few
are better. The choice is entirely a matter of taste. For
example, that last command might be parenthesized in
the following ways. Which way makes it visually
clearest to you what the command does?

PR (SE (WORD (LAST (PLURAL "CAT)) "CAT) "CAT)
PR SE (WORD LAST (PLURAL "CAT) "CAT) "CAT
PR SE (WORD (LAST PLURAL "CAT) "CAT) "CAT

Terrapin Logo Tutorial W-69

Words and Lists

W-70

He sure to type a space between "CAT and)
- otherwise, Logo will read the parenthesis
as part of the word and will complain that
the primitive needs more inputs, i.e. Logo
can't find a matching right parenthesis.

Using Logo Predicates and Creating New
Ones: LISI?, WORD?, MEMBER?, and the
Structure of IF, THEN, and ELSE

All along, we've been using IF without any explana­
tion of its structure. The IF statement has three parts:

1) The IF itself

2) A condition which may be either TRUE or
FALSE. (In this case, the condition is LIST?
:NOUN which tells whether it is TRUE or
FALSE that NOUN is a list.) The condition
may include modifiers such as NOT, ALLOF,
and ANYOF, either individually or in combi­
nation.

3) The THEN clause: an action to perform if
the condition is TRUE.

An IF statement can also have an additional two parts
when desired.

1) The word ELSE and

2) An action to perform if the condition is
FALSE

Terrapin Logo Tutorial

Words and Lists

Finally, as mentioned earlier, the word THEN can be
used optionally between the condition and the action­
if-true.

Thus, an IF statement can take the following four
forms.

IF condition action-if-true
IF condition THEN action-if-true
IF condition action-if-true ELSE action-if-false
IF condition THEN action-if-true ELSE action-if-false

The condition always contains a "predicate," a Logo
primitive or user procedure that answers a True-False
question by outputting TRUE or FALSE.

In the case of LIST? :NOUN, the True-False question is
''NOUN is a list! True or false?'' If the statement is false,
LIST? outputs FALSE. If the statement is true, LIST?
outputs TRUE.

You will often need to create your own predicates, so it
is important to become familiar with their behavior.
Type these expressions to Logo:

LIST? PEOPLE
LIST? FIRST PEOPLE
LIST? NTH 3 PEOPLE

Each time, Logo should announce a result, showing
that LIST? output a word, either TRUE or FALSE, de­
pending on whether the input was a list or not.

Terrapin Logo Tutorial W-71

Words and Lists

W-72

You have used several other predicates. When you
used NUMBER? :CHTR in the EASY procedure for
QUICKDRAWin project 5, it output TRUE or FALSE
depending on the truth of the statement "CHTR is a
number."

In GREET, you used the expression EMPTY?
:PERSON. It worked the same way.

And, in the expression IF :CHTR = "F, the equal sign
also outputs TRUE or FALSE depending on the truth of
the statement that CHTR equals "F. (The =, like the +,
comes between its inputs.)

The RC? primitive (which takes no inputs), the
WORD? primitive (which takes one input), and the
procedure MEMBER? (which takes two inputs) are
also predicates.

When you first defined MEMBER? and EMPTY? we
postponed explaining how they work. You are now
probably ready for that explanation.

Look first at the procedure EMPTY?.

TO EMPTY? :OBJECT
OUTPUT ANYOF : OBJECT = [] : OBJECT = "

END

There are two equal-signs in the procedure. Each one
outputs TRUE or FALSE.

The first one outputs TRUE if OBJECT is the empty list
(and FALSE otherwise). The second outputs TRUE if
OBJECT is the empty word (and FALSE otherwise).

Terrapin Logo Tutorial

Words and Lists

ANYOF takes two (or more) inputs, and it outputs
TRUE if any of them is TRUE.

Finally, the purpose of the command OUTPUT in the
procedure is to tell EMPTY? to output whatever
ANYOF outputs. Thus, EMPTY? outputs TRUE if any
of these conditions is true:

the OBJECT is[], the empty list
the OBJECT is", the empty word

Otherwise, EMPTY? outputs FALSE.

Now look at the procedure MEMBER?.

TO MEMBER? :ELEMENT :OBJECT
IF EMPTY? :OBJECT OUTPUT "FALSE
IF :ELEMENT= FIRST :OBJECT OUTPUT 'TRUE
OUTPUT MEMBER? :ELEMENT BUTFIRST :OBJECT

END

Surely ELEMENT cannot be a member of OBJECT if
OBJECT has no members! So, if OBJECT is empty,
MEMBER? should output FALSE.

IF EMPTY? : OBJECT OUTPUT "FALSE

If ELEMENT is the first member of OBJECT, the proce­
dure need check no further. It can already answer
TRUE that ELEMENT is a member of OBJECT.

IF :ELEMENT= FIRST :OBJECT OUTPUT "TRUE

Terrapin Logo Tutorial W-73

Words and Lists

W-74

Now, the recursive step. If there are more elements in
OBJECT (because OBJECT is not empty), but
ELEMENT is not the first element of OBJECT, it may
still be one of the later elements. If it is a member of
BUTFIRST :OBJECT, it is clearly a member of OBJECT.

So, if ELEMENT is not the first element of OBJECT, but
there are more elements, the procedure may answer
the original question - MEMBER? :ELEMENT
:OBJECT- by outputting the answer to a simpler
question - MEMBER? :ELEMENT BUTFIRST
:OBJECT.

OUTPUT MEMBER? :ELEMENT BUTFIRST :OBJECT

You've probably noticed that every predicate
has the -? suffix. We will continue to use this
convention throughout the chapter. When
you see a primitive or procedure name end­
ing in -?, you'll know that its behavior is to
output TRUE or FALSE.

Projects with Predicates

16. Define the predicate, TO VOWEL? :LETTER, that
outputs TRUE if LETTER is a vowel, and FALSE
otherwise.

17. Define the predicate, TO YES?, that requests a
typed line from the user and outputs TRUE if that line
is a reasonable synonym of' 'yes,'' FALSE if the line is a
reasonable synonym of "no," and otherwise prints a
message requesting clarification and calls itself recur­
sively to try again. Decide on the synonyms you will
::ir.ceot

Terrapin Logo Tutorial

Words and Lists

Ordered Rules

Testing out PLURAL reveals a number of bugs. Try the
following inputs:

PLURAL "DOG
PLURAL 'TURTLE
PLURAL "FLY
PLURAL "FINCH
PLURAL "FISH
PLURAL "MOUSE
PLURAL "CHILD
PLURAL "FOX
PLURAL [FOX TERRIER]

Two different kinds of bugs can be noted. One is that
some of the plurals are not correct. The procedure 's
only rule is to tack on an S, and it must be taught more
about English plurals.

The other bug is that it couldn't handle [FOX
TERRIER] at all. In this case, Logo complains that
WORD doesn't like [FOX TERRIER] as input in the
context of OUTPUT WORD :NOUN "Sin the proce­
dure PLURAL.

Logo, of course, is not biased against cute dogs. It is
merely trying to say that WORD glues pieces of words
- not lists-together to make other words.

To solve this problem the procedure doesn't need more
knowledge about English, but rather needs more
knowledge about its inputs. We will show a solution to
three of the problems and suggest several other prob­
lems as projects for you to work on.

Terrapin Logo Tutorial W-75

Words and Lists

W-76

First, the FOX TERRIERS. If NOUN is a list, PLURAL
should probably do most of its work on the last word of
the list.

It should OUTPUT a SENTENCE composed of all BUT
the LAST word of NOUN, and the PLURAL of the
LAST word of NOUN. The Logo instruction would
look like this:

IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN

Edit PLURAL and add that line.

TO PLURAL :NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
OUTPUT WORD :NOUN "S

END

Try
PLURAL [BLUE BIRD]
or
PLURAL [RICKETY LADDER]
in addition to
PLURAL [FOX TERRIER].

Right now, PLURAL "FOX outputs FOXS. To get it to
output FOXES, we might include a simple test to see if
Xis the last letter of NOUN. If itis, we should attach ES
rather than S to NOUN.

IF "X = LAST :NOUN OP WORD :NOUN "ES

Where shall we put this new instruction? Certainly not
as the last instruction, because if it came after the line
OUTPUT WORD :NOUN ''S, the procedure would

Terrapin Logo Tutorial

Words and Lists

never get to it. In this case, it makes little difference in
PLURAL's behavior whether the new instruction
comes first or second.

Edit PLURAL and define it to look like this:

TO PLURAL :NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
IF "X = LAST :NOUN OP WORD :NOUN "ES
OUTPUT WORD :NOUN "S

END

Now test it out. Does PLURAL give the right plural for
FOX? What about [FOX TERRIER]? And what about
[GREY FOX]?

A third problem is teaching the procedure how to
handle the really strange cases, like CHILD, MOUSE,
FOOT, and SHEEP. First, we must make a list of the ex­
ceptions.

MAKE "EXCEPTIONLIST [CHILD MOUSE FOOT SHEEP OX]

PLURAL must be told something like "If the noun is
one of the exceptions ... "

IF MEMBER? :NOUN :EXCEPTIONLIST ...

" ... then output the special plural associated with
that particular noun.''

... OUTPUTspecial.plural.something.or.other

Where should that special-plural information reside?
It could be another procedure:

Terrapin Logo Tutorial W-77

Words and Lists

W-78

TO EXPLU :NOUN
IF :NOUN= "CHILD OP "CHILDREN
IF :NOUN = "SHEEP OP "SHEEP
IF :NOUN = "MOUSE OP "MICE
IF :NOUN = "FOOT OP "FEET
etc.

END

In that case the new addition to PLURAL would be:

IF MEMBER? :NOUN :EXCEPTIONLIST OP EXPLU :NOUN

Another approach, in some ways simpler, is to put
each piece of special plural information into a box
whose name is the noun itself. So we could put
CHILDREN into a box named CHILD, and put SHEEP
into a box named SHEEP, etc.

MAKE "CHILD "CHILDREN
MAKE "SHEEP "SHEEP
MAKE "OX "OXEN

Then IF the NOUN were a member of the
EXCEPTIONLIST, PLURAL should OUTPUT the ob­
ject (THING) inside a box associated with the NOUN.
The Logo would look like this:

IF MEMBER? :NOUN :EXCEPTIONLIST OP THING :NOUN

This is strange-looking code, indeed. What can THING
:NOUN mean? If :NOUN is CHILD, then THING
:NOUN is the THING of CHILD, and if :NOUN is
SHEEP, then THING :NOUN is the THING of SHEEP.

Terrapin Logo Tutorial

Words and Lists

And what is the THING of CHILD? CHILDREN, be­
cause earlier you typed MAKE "CHILD "CHILDREN.
So, too, the THING of SHEEP is SHEEP.

Projects with PLURAL

18. It matters where you place the new instruction.
Below, we show PLURAL defined in three different
ways, with the new instruction placed first, second,
and third.

Define PL URAL each way and test it out enough to de­
termine which way(s) work. (Why do we not bother
even trying it as the fourth instruction?)

TO PLURAL :NOUN
IF MEMBER? :NOUN :EXCEPTIONLIST OP THING :NOUN
IF LIST?: NOUN OP SE BL: NOUN PLURAL LAST: NOUN
IF "X = LAST :NOUN OP WORD :NOUN "ES
OUTPUT WORD :NOUN "S
END

TO PLURAL :NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
IF MEMBER? :NOUN :EXCEPTIONLIST OP THING :NOUN
IF "X = LAST: NOUN OP WORD : NOUN "ES
OUTPUT WORD :NOUN "S
END

TO PLURAL :NOUN
IF LIST? :NOUN OP SE BL :NOUN PLURAL LAST :NOUN
IF "X = LAST :NOUN OP WORD :NOUN "ES
IF MEMBER? :NOUN :EXCEPTIONLIST OP THING :NOUN
OUTPUT WORD :NOUN "S
END

Terrapin Logo Tutorial W-79

Words and Lists

W-80

19. To teach PLURAL when to add ES at the end, you
sometimes must look at the last letter of :NOUN and
sometimes at the last two letters. Figure out the rule,
and then make PLURAL smart enough to output the
correct plural for WISH.

Does it handle [BEST WISH] correctly? Can it handle
BOSS? FINCH? Does it still do the right thing for FOX?
Are you satisfied with the way it handles FISH?

20. Teach it to do the right thing with FLY.

21. Does PL URAL handle BOY and KEY correctly? If
not, fix it.

22. In project 15 above, you wrote a program to gener­
ate random sentences out of the nouns in PEOPLE and
the verbs in ACTIONS. Without changing any of the
details of the program, you can add HE, [MY MOTHER],
and certain other nouns and pronouns to PEOPLE,
but, as the program stands, it will stop making gram­
matical sentences if PEOPLE contains elements like
YOU, or [CHARLES AND DIANA].

This can be fixed. ACTIONS now contains the verbs
[LOVES [DREAMS ABOUT] KISSED HATES [CAN'T
STAND] LIKES]. If it were changed slightly, a program
similar to PLURAL could add the proper S or D end­
ings when needed. This is what ACTIONS would need
to contain: [LOVE [DREAM ABOUT] KISS HATE
[CAN'T STAND] LIKE]

First, writeaprocedure, TOFIXVERB :VERB (the logic
will be similar to PLURAL, but not the same) that adds
Sor ES or nothing to any verb that is its input. Write

Terrapin Logo Tutorial

Words and Lists

another procedure, TO PAST :VERB that adds Dor ED
(or makes whatever other change is needed) to put the
verb in past tense.

Now write a procedure that takes a subject such as
YOU or [THE TURTLE] and figures out whether the
verb needs to be "fixed" or not.

With these procedures you can make a better sentence
generator.

23. If you know French, you could do the same thing
for French verbs. Of course, the rules are more com­
plicated, and you will need to do more designing and
more programming.

But you have all the techniques now, and some good
strategies. It is probably a good idea to have small pro­
cedures, each of which does a specific job, rather than
one large procedure that does everything.

A set of procedures that conjugate French verbs can be
used in a program that generates French sentences. It
can also be used as part of a quiz on French verbs. The
next section will deal with quiz programs.

Quiz Programs: More About REQUEST (RQ)

When REQUEST is encountered in a procedure, the
procedure stops and waits until the user presses
<RETURN>. Anything that the person has typed
prior to the <RETURN> is then output by REQUEST
as a list.

Terrapin Logo Tutorial W-81

Words and Lists

W-82

If the person types a dozen words, REQUEST outputs a
12 word list. If the person types nothing, REQUEST
outputs an empty list. If the person types a single
word, REQUEST outputs a one word list. The impor­
tant thing to remember is that REQUEST's output is
always a list, never a word.

Here is a model of a simple quiz program. QUIZ
"gives" the quiz, using QA to handle each question/
answer pair. QA is a subprocedure that prints the ques­
tion, requests an answer from the quizee and if that an­
swer is the official ANSWER , prints "YUP!" and stops.
If the answer is not judged to be correct, QA prints the
correct answer.

TO QUIZ
PRINT [TEST YOUR BRILLIANCE!]
QA [WHO IS BURIED IN GRANTS TOMB?] [GRANT]
QA [WHY DID THE CHICKEN CROSS THE ROAD?] [TO GET GAS]
QA [HOW DO YOU SPELL RELIEF?] [CORRECTLY]

END

TO QA :QUESTION :ANSWER
PRINT :QUESTION
IF :ANSWER= REQUEST PR [YUP!] STOP
PR SE [NOPE! THE ANSWER IS:] :ANSWER

END

On the surface, the logic of the addition quiz below is
identical to QUIZ. ADDQUIZ "runs" the test, calling
ADDQ with each number pair. ADDQ's inputs are two
numbers to add. It doesn't need to be told the answer,
as QA did, because it can figure out the answer itself.

Terrapin Logo Tutorial

(buggy line)

Words and Lists

Its first line prints the question-for example 7 + 9 =
- and waits for the answer at the end of the line. The
second line waits for the user to type an answer and
compares it to the calculated correct answer.

If the user's answer is the same, ADDQ prints YAY! and
stops. Otherwise it prints the correct answer. It seems
like it ought to work. Yet it has a bug.

Define ADDQUIZ and its subprocedure ADDQ, try the
quiz (by typing ADDQUIZ), and see if you can make it
work properly before reading on.

TO ADDQUIZ
PRINT [TEST YOUR ADDITION]
ADDQ 7 9
ADDQ8 5
ADDQ 98

END

TO ADDQ :NUMBERl :NUMBER2
PRINTl (SE :NUMBERl "+ :NUMBER2 "'= ')

IF (:NUMBERl + :NUMBER2) = REQUEST PR [VAY!] STOP
PR (SE "NOPE, :NUMBERl "+ :NUMBER2 "= :NUMBERl

+ :NUMBER2)
END

Forgetting that REQUEST always outputs a list is a fre­
quent source of bugs. As the procedure ADDQ is cur­
rently written, it will never print YAY!. (:NUMBER1 +
:NUMBER2) is a number (and therefore a word), while
REQUEST outputs a list-the two can never be equal.

Terrapin Logo Tutorial W-83

Words and Lists

vV-84

To make them comparable, we need to change
REQUEST's list into a word. We can do this by taking
the FIRST of REQUEST. Thus ADDQ will work if
REQUEST is replaced by FIRST REQUEST or its ab­
breviation FIRST RQ.

Make that change and verify that ADDQ now works by
typing

ADDQUIZ

Projects with REQUEST

24. In general, there is more than one right way to an­
swer a question, yet QUIZ considers only one answer
correct. Suppose QUIZ were rewritten this way:

TO QUIZ
PRINT [TEST YOUR BRILLIANCE!]
QA [WHO IS BURIED IN GRANT'S TOMB?]

[[GRANT] [GENERAL GRANT]]
QA [WHY DID THE CHICKEN CROSS THE ROAD?]

[[TO GET GAS] [FOR FUN] [TO LAY EGGS]]
QA [HOW DO YOU SPELL RELIEF?]

[[CORRECTLY] [ROLAIDS]]
END

In each case, a different number of correct answers has
been provided. Rewrite QA to account for the choices
of answers.

25. The biggest difference between the subprocedure
ADDQ for the addition quiz and the subprocedure QA
for the general information quiz is that ADDQ does not
need to be told the answer to the question. Because

Terrapin Logo Tutorial

Words and Lists

number pairs can be selected at random, even the ques­
tions do not have to be specified one by one.

This means that the quiz can keep generating ques­
tions as long as desired, without having had to list all
the questions beforehand. Write an addition quiz that
poses problems with randomly selected numbers no
larger than 12, and keeps going until the quizee gets
ten of them correct.

26. Add a bit more intelligence to the addition quiz.
Let it start by posing addition problems with very
small numbers, say under 4. If a person gets three of
them correct, the program begins giving slightly larger
numbers, and so on. The program stops if a person gets
two wrong in a row.

27. Change ADDQ's title line to read TO ADDQ
:TRIES :NUMBER1 :NUMBER2 and change the proce­
dure to allow a person two tries at the same problem
before the problem is changed.

ADDQ should perhaps say TRY AGAIN if the person
gets the wrong answer the first time, but should not
give the correct answer until the person gets the prob­
lem wrong a second time. Then it should quit and go
on to the next problem.

28. Using the procedures PICK and QA that were
defined earlier in the solution to project 15 , write a
STATESQUIZ program that picks question-answer
sets off a pre-defined list. You might store the informa­
tion in a form something like this:

MAKE "STATES [[OHIO COLUMBUS] [[NEW YORK]
ALBANY] [GEORGIA ATLANTA]]

Terrapin Logo Tutorial W-85

Words and Lists

W-86

29. If you used the exact list shown in project 28, and
wrote a working STATESQUIZ, it may be hard to add
states that have multi-word capitals to the list. For
example, if you now type MAKE "STATES LPUT
[IOWA [DES MOINES]] :STATES, the chances are that
when STATESQUIZ asks what the capital of Iowa is, it
will not accept any answer as correct.

Fix the quiz so that it works, either by redesigning the
data-base (:STATES) to be more consistent, or by mak­
ing the procedures smart enough to handle the incon­
sistency. (Suggestion: redesigning the database makes
the program simpler.)

30. If you have written a French verb conjugator, you
can write a quiz similar to ADDQUIZ that selects a verb
at random from a list, selects a pronoun, also at ran­
dom, and asks the person to type in the correct verb
form.

Composing Logo Objects: SENTENCE,
WORD, LIST, FPUT, LPUT, TEST, IFTRUE,
andIFFALSE

Here is a procedure, JUNKMAIL, that uses SENTENCE
and its abbreviation SE. Define JUNKMAIL, complete
with extra spaces as shown below.

TO JUNKMAIL :PERSON
PR SENTENCE [DEAR] :PERSON
PR [IF YOU ACT RIGHT NOW, YOU HAVE]
PR [A CHANCE TO WIN A MILLION DOLLARS!]
PR [WINNING TICKETS, ALREADY MADE OUT]
PR [IN YOUR NAME, ARE WAITING FOR YOU.]
PR (SE [THINK,] :PERSON[, WHAT THAT COULD MEAN!])

END

Terrapin Logo Tutorial

0

Words and Lists

To run it, type JUNKMAIL followed by a list or a word,
like this:

JUNKMAIL [MS. RACHEL LEVIN]
JUNKMAIL [ABBY]
JUNKMAIL "MIKE
JUNKMAIL PICK PEOPLE

Notice, first, its handling of spaces. All of the extra
spaces you inserted are missing. Also, because
SENTENCE creates a list- outputting DEAR ABBY
instead of the word DEARABBY- it appears to leave a
space between its inputs. The space, as noted earlier, is
not a part of the list, but merely a separator that comes
between elements of the list. ·

SENTENCE always outputs a list. If either input is a
word, SENTENCE treats that input as if it were a one­
element list. Thus, all four of these expressions output
the sentence [DEAR ABBY].

SENTENCE "DEAR "ABBY
SENTENCE "DEAR [ABBY]
SENTENCE[DEAR]"ABBY
SENTENCE [DEAR] [ABBY]

The last line of JUNKMAIL contains parentheses. By
surrounding the primitive SENTENCE and the three
objects that follow it, those parentheses tell Logo that
the primitive is to accept all three objects as input.

A few Logo primitives-in general, the ones
that "associatively combine" their inputs,
such as SENTENCE, WORD, and LIST, but

Terrapin Logo Tutorial W-87

Words and Lists

W-88

also some others such as PRINT and PRINT1
-have this ability to accept other than their
usual number of inputs when surrounded by
parentheses.

User-defined procedures cannot be given this
feature.

The procedure has a formatting bug. We would like it
to type,

THINK, MIKE, WHAT THAT COULD MEAN!

but the space that separates elements of a list has sepa­
rated PERSON from the following comma, with this
result:

THINK, MIKE , WHAT THAT COULD MEAN!

When, in PLURAL, you attached S to one of the words
in a list, you were solving a similar problem, but
JUNKMAIL adds a new twist.

If we could be certain that PERSON was a Logo word,
the change would be simple:

PR (SE [THINK,] WORD :PERSON", [WHAT THAT COULD
MEAN!])

But this will not work if the input is a list. Since WORD
cannot take lists as inputs, the list would first have to
be torn apart (using FIRST or LAST to extract the ele­
ments, and BUTFIRST or BUTLAST to preserve the
rest), and then recomposed (using SENTENCE) after
the comma is affixed properly by WORD.

Terrapin Logo Tutorial

Words and Lists

PR (SE [THINK,] BL :PERSON WORD LAST :PERSON",
[WHAT THAT COULD MEAN!])

Now try JUNKMAIL twice, once with a word and once
with a list. What happens?

Since the user is free to input either word or a list, we
must take still one more step. We have a choice. One
possibility is to test the input with WORD? or LIST?
and choose which path to follow depending on the
outcome. We can perform either test and write the rest
of the IF statement accordingly. So, the logic might be:

IF LIST? :PERSON do-the-list-version ELSE
do-the-word-version

or
IF WORD? :PERSON do-the-word-version ELSE

do-the-list-version

In either case, the result is a horribly long line that be­

comes nearly impossible to read. Here is how it might
look inside the editor if the LIST? test were used:

IF LIST? :PERSON PR (SE [THINK,] BL:!
PERSON WORD LAST :PERSON", [WHAT THAT!

COULD MEAN!]) ELSE PR (SE [THINK,] WO!

RD :PERSON", [WHAT THAT COULD MEAN!])

Logo provides another IF-like construction, TEST,
which is useful when several actions must be per­
formed depending on the truth of the tested condi­
tional. TEST is also useful when the actions are very
long, as they are in this case.

Terrapin Logo Tutorial W-89

Words and Lists

Here is how the same logic would be written using
TEST.

TEST LIST? :PERSON
IFTRUE PR (SE [THINK,] BL :PERSON WOR!
D LAST :PERSON ", [WHAT THAT COULD MEAN!
!])
IFFALSE PR (SE [THINK,] WORD :PERSON !
", [WHAT THAT COULD MEAN!])

1/7 There is ,1 less verbose alternative. Since (SE "ABBY)
~~ and (SE ; \BBY]) both output the list [ABBY],

SENTE!\ (:E can be used to convert the input, what­
ever form it started in, into a standard form.

W-90

Insert th e statement MAKE "PERSON (SE :PERSON)
as the firs L line of JUNKMAIL to force :PERSON to be a
list. The parentheses are needed because SE is taking
fewer th an two inputs. Then, since you know that
:PERSOi\ is a list, you need not test and can use just the
solution l hat applies to lists. This application of SE
often comes in handy.

LIST, FPUT, and LPUT also compose lists. It is impor­
tant both to compare their effects by doing some sim­
ple experiments (some will be suggested below) and to
know why anybody would care about the differences.

First, compare SENTENCE and LIST this way:

SE [THIS IS] [A LIST]
LIST [THIS IS] [A LIST]

SENTENCE outputs a list whose elements are the ele­
ments of its inputs, whereas LIST outputs a list whose
elements are its inputs.

Terrap in Logo Tutorial

Words and Lists

When is this important? If you are trying to compose
a simple list of words, as in an English sentence,
SENTENCE is the right choice. Try these:

SE [THIS IS A] "SENTENCE
SE "THIS [IS A SENTENCE]
(SE 'THIS [IS] "A [SENTENCE])
(SE [THIS IS A SENTENCE])
(SE "THIS "IS "A "SENTENCE)

Because SENTENCE throws away information about
the structure of its inputs, each of these expressions
outputs the same list, [THIS IS A SENTENCE]. Now try
the same sets of inputs using the primitive LIST in­
stead of SE.

LIST [THIS IS A] "SENTENCE
LIST 'THIS [IS A SENTENCE]
(LIST 'THIS [IS] "A [SENTENCE])
(LIST [THIS IS A SENTENCE])
(LIST "THIS "IS "A "SENTENCE)

The structure of the inputs is fully preserved in the
output.

[[THIS IS A] SENTENCE]
[THIS [IS A SENTENCE]]
[THIS [IS] A [SENTENCE]]
[[THIS IS A SENTENCE]]
[THIS IS A SENTENCE]

LIST is the primitive to use when you need to package
objects, unaltered, into a list. Like SENTENCE, LIST
usually takes two inputs, but when parenthesized, it
accepts any number greater than zero.

Terrapin Logo Tutorial W-91

Words and Lists

W-92

Neither SENTENCE nor LIST allows you to insert an
element into an already existing list. This is the job of
FPUT and LPUT.

Each takes an object (word or list) as its first argument
and a list as its second argument. It then inserts the ob­
ject into the list either to become the first element of the
new list (in the case of FPUT) or the last element of the
new list (LPUT), and outputs the new list. Try these:

FPUT 'THIS [IS A SENTENCE]
LPUT "THIS [IS A SENTENCE]
LPUT [FD 50] [[RT 90] [BK 30] [LT 60]]

FPUT and LPUT are important when you are ac­
cumulating information gradually and want to keep
track of it on a list. This is the reason why LPUT was
the proper primitive for storing new names of people
that GREET met in the FRIENDLY program that you
defined in the section called Some Friendly Introduc­
tions.

Because LPUT created its output by packing the new
object (in that case, PERSON) into a previously exist­
ing list (in that case, KNOWN), its output can later be
decomposed back to the original object and list by
LAST and BUTLAST respectively.

This inverse relationship of LPUT to LAST and
BUTLAST, and of FPUT to FIRST and BUTFIRST is
what makes these two primitives so important. This re­
lationship is best shown by an illustration and some
experimenting.

Terrapin Logo Tutorial

Words and Lists

The relationship can be summarized this way (type
each statement below):

If WOL represents any Logo word or list, e.g.

MAKE "WOL [FD 50]

and OLD.LIST represents any Logo list , e.g.

MAKE "OLD.LIST [[RT 90].[BK 30] [LT 60]]

then define NEW.LIST this way:

MAKE "NEW.LIST FPUT :WOL :OLD.LIST

Now type

PR :WOL PR :OLD.LIST PR :NEW.LIST

and observe that the following two statements are true:

:WOL = FIRST :NEW.LIST
:OLD.LIST= BF :NEW.LIST

Similarly , if you

MAKE "D LPUT :WOL :OLD.LIST

then these statements are true:

:WOL = LAST :D
:OLD.LIST= BL :D

Terrapin Logo Tutorial W-93

Words and Lists

W-94

An Application of LPUT in Interactive
Graphics: RUN
Look back at the procedure EASY that you defined in
the early section called Interactive Graphics. Each time
certain characters are pressed, a turtle command is
executed.

The screen "remembers" the effect of each command,
but the program has no way of knowing what com­
mand it executed last. It could not, for example, run
through the same sequence of commands again to
make another copy of the design on the screen.

Just as FRIENDLY was given a memory, you can add
memory to the QUICKDRA W program. Each time a
character is pressed, EASY will run the proper com­
mand, and also store that command on a list.

Using the simplest combination of the strategies in
GREET and in EASY, one might rewrite each line of
EASY to look something like this:

IF :CHTR = "F THEN FD 10 MAKE "HISTORY FPUT [FD 10]
:HISTORY

IF :CHTR = "R THEN RT 15 MAKE "HISTORY FPUT [RT 15]
:HISTORY

IF :CHTR = "L THEN LT 15 MAKE "HISTORY FPUT [LT 15]
:HISTORY

etc.

But there is a way of reducing the amount of repe­
tition. If there was a procedure (let us call it
RUN.AND.RECORD) that could take the command
as input and be responsible for both the running and

Terrapin Logo Tutorial

Words and Lists

recording of the command, EASY could be written
more economically and more understandably as:

IF :CHTR = "F RUN.AND.RECORD [FD 10]
IF::CHTR = "R RUN.AND.RECORD [RT 15]
IF :CHTR = "L RUN.AND.RECORD [LT 15]
etc.

If RUN.AND.RECORD calls its input MOVE, then the
line that records the history of moves might look like
this:

MAKE "HISTORY (LPUT :MOVE :HISTORY)

To run a list that contains a legal Logo command or ex­
pression, Logo provides the primitive RUN.

Thus, the procedure that runs and records each move
might look like this:

TO RUN.AND.RECORD :MOVE
RUN :MOVE
MAKE "HISTORY (LPUT :MOVE :HISTORY)

END

To summarize, RUN.AND.RECORD takes an input list
containing a Logo command. It RUNs the input, and
then tucks it neatly into a list named HISTORY.

Define this new procedure and test it out a few times.
As was necessary in the FRIENDLY program, you must
first create an empty HISTORY list for
RUN.AND.RECORD to add its new moves to.

MAKE "HISTORY []

Terrapin Logo Tutorial W-95

Words and Lists

W-96

Now type these commands. (Use <CTRL> P to repeat
the line and the key to change the last few
characters. It will save you some typing!):

RUN.AND.RECORD [FD 30]
RUN.AND.RECORD [RT 120]
RUN.AND.RECORD [BK 10]
RUN.AND.RECORD [RT 24]
RUN.AND.RECORD [BK 5]

To print the history list, type

PR :HISTORY

and notice that it contains a record of the commands
that generated the picture on the screen.

[FD 30] [RT 120] [BK 10] [RT 24] [BK 5]

Using the History List: Applying a Command
(RUN) to Each Element of a List

Whole new possibilities are now opened up. Re­
running each of these commands will copy the design
onto the screen a second time.

Alternatively, you can achieve the effect of "undoing"
the last command (BK 5) by erasing the screen, remov­
ing the [BK 5] from the history list and running what
remains.

The INSTANT program on your Utflities Disk
uses this strategy. Several of the procedures
described in this section are similar to those

Terrapin Logo Tutorial

Words and Lists

used in INSTANT. You may want to study that
program. See the Graphics chapter for a de­
scription of its use.

Both of these functions require that you have a proce­
dure capable of doing the same thing-in this case,
RUNning - to each of the elements of a list.

Normally RUN takes a list and executes the com­
mand(s) in the list. Here, the list to be run is composed
of sub-lists, each of which must be run individually.

The procedure will take the list as input:

TO RUN.ALL :COMMANDS

If the list is empty, then the job is done, so the proce­
dure stops.

IF EMPTY? :COMMANDS STOP

If the list is not empty, then perform the required
action to the first element of the list.

RUN FIRST :COMMANDS

And then, following the same logic, deal with the
remainder of the list.

RUN.ALL BF :COMMANDS

Define the procedure RUN.ALL.

Terrapin Logo Tutorial W-97

Words and Lists

W-98

TO RUN.ALL :COMMANDS
IF EMPTY? :COMMANDS STOP
RUN FIRST :COMMANDS
RUN.ALL BF :COMMANDS

END

RUN.ALL can be thought of as a model for a
whole class of procedures. For instance, you
have already seen MEMBER?, NTH, and
COUNT. The structure of this kind of proce­
dure is shown in the "ghost" procedure below:

TO X.ALL :LIST title with input
IF EMPTY? :LIST STOP condition for stopping
Y FIRST :LIST action to take with first element
X.ALL BF :LIST recursive call with BF input

END end

Here is a procedure of similar structure which
erases a list of procedures.

TO ERLIST :PROCS
IF EMPTY? :PROCS STOP
RUN LIST "ERASE FIRST :PROCS
ERLIST BF :PROCS

END

Type these commands:

RUN.ALL :HISTORY
RUN.ALL :HISTORY
REPEAT 2 [RUN.ALL :HISTORY]
PR :HISTORY

lerrapin Logo Tutorial

Words and Lists

The picture has changed, but the history list has not.
Why? Because RUN.ALL did not record any of the
commands it ran; it just ran them.

To "undo" a command, we clear the screen and run all
but the last element of the history list. Of course, if the
history list is already empty, we cannot undo any more
and so should just stop.

Here is a procedure which does that:

TO UNDO
IF EMPTY? :HISTORY STOP
MAKE "HISTORY BL :HISTORY
DRAW
RUN.ALL :HISTORY

END

Clear the screen with DRAW and type RUN.ALL
:HISTORY. Now type UNDO a few times to see its
effect.

Projects with History Lists

31. Edit EASY to take advantage of RUN.AND.RECORD
and UNDO. Some changes need to be made in addi-
tion to inserting the two new procedures.

Try out all of the features - the old as well as the new
- in a variety of combinations to be certain they work
together properly. In particular, make certain that
UNDO does the right thing when pressed right after
you have pressed the D key to erase the screen.

Terrapin Logo Tutorial W-99

Words and Lists

W-100

To start up the program with an empty history list, it
might be convenient to define this startup procedure:

TO STARTUP
MAKE "HISTORY[]
QUICKDRAW

END

32. Add right-curving circles and left-curving circles
to QUICKDRA W.

Substituting One Word for Another in a
Sentence: A Procedure with Two Recursive
Calls

We will design a procedure that will work like this:

SUBST "DOGS "CATS [WE THINK DOGS ARE GREAT]
RESULT: [WE THINK CATS ARE GREAT]
SUBST "X PICK PEOPLE [WE LOVEX MOR ETHAN ANYBODY]
RESULT: [WE LOVE SANDY MORE THAN ANYBODY]
SUBST "ADV PICK ADVERBS [COLORLESS GREEN IDEAS

SLEEP ADV]
RESULT: [COLORLESS GREEN IDEAS SLEEP FURIOUSLY]

It will serve as a building block for a variety of lan­
guage activities, and a model for a procedure that can
work Mad-Libs.

What is its design? It takes three inputs: a key word it
is looking for, a word to replace that one with, and a
sentence as a context in which to perform the replace­
ment.

Terrapin Logo Tutorial

Words and T.ists

This version of SUB ST will replace all occurrences of
the key word with the replacement word. Described
concretely, it can look through sentences like [WE
THINK DOGS ARE GREAT] and wherever it finds
DOGS, it substitutes CATS.

The logic is absolutely like the recursive model shown
before.

Let's review the model:

title with inputs
condition for stopping
action to take with first element
recursive call with BF input
end

The title line and stop condition are straightforward. If
there is nothing in the sentence CONTEXT, there is
nothing to substitute, so the procedure outputs an
(identical) empty sentence.

The remaining two lines introduce a new twist. The
action to take with the first element is clear: if it is the
key word :KEY that we are looking for

IF (FIRST :CONTEXT)= :KEY

the procedure must replace it with :NEW. Replacing
the first element of a list means keeping the butfirst.
SUB ST must output a sentence composed of the new
first element with the butfirst of the original
CONTEXT. This, by itself, is

OP SE :NEW BF :CONTEXT

Terrapin Logo Tutorial W-101

Words and Lists

W-102

But the object is to catch every occurrence of KEY in
CONTEXT. SUBST changed one occurrence at the be­
ginning, but the code line we just wrote takes the but­
first of the CONTEXT without checking further.

Instead of BF :CONTEXT itself, what we really want is
the result of a continued substitution of NEW for KEY
in that BF :CONTEXT. So the action really is

OP SE :NEW SUBST :KEY :NEW BF :CONTEXT

and the logic of that line is

IF (FIRST :CONTEXT)= :KEY OP SE :NEW SUBST :KEY :NEW
BF :CONTEXT

If there is no substitution to make, of course, SUBST
will keep the first element, but it still must check
further in the sentence for later occurrences of the key
word. The action in this case is nearly identical to the
previous action except that the first element of the list
is not changed to NEW but kept as is:

OP SE FIRST :CONTEXT SUBST :KEY :NEW BF :CONTEXT

Here is the entire procedure:

TO SUBST :KEY :NEW :CONTEXT
IF :CONTEXT= []OP[]
IF (FIRST :CONTEXT)= :KEY OP SE :NEW SUBST :KEY

:NEW BF :CONTEXT
OP SE FIRST :CONTEXT SUBST :KEY :NEW BF :CONTEXT

END

Terrapin Logo Tutorial

Words and Lists

And here are some examples of its use.

SUBST ''VERB "LOVES [PAUL VERB CINDY]
SUBST "VERB PICK ACTIONS [THE TURTLE VERB DALE]
SUBST "NAME "CHRIS [NAME KISSED NAME]
SUBST "NAME PICK PEOPLE [NAME WON'T SPEAK TO

NAME]
SUBST "ADV PICK [STEALTHILY CREATIVELY [WITH

EXCEPTIONAL SPEED] HUNGRILY] [CATS CAN CLIMB
TREES ADV BECAUSE OF THEIR SHARP CLAWS]

Although the procedure does everything it is adver­
tised to do, it is not quite right for Mad-Libs. The prob­
lem is that in a command like PR SUB ST "NAME PICK
PEOPLE [NAME WON'T SPEAK TO NAME], both
NAMEs are replaced by the same PICK from PEOPLE.

Why? Because the picking is done first. SUB ST is pre­
sented with one name, selected at random by PICK, to
use everywhere it finds the key word.

SUB ST is useful as it is (because sometimes it is neces­
sary to specify a particular replacement to make) but
for Mad-Libs, it would be better to have a procedure
that looked for a key word and each time it found one,
selected at random from a list of potential substitutes.

Such a procedure would need inputs giving the key
word and context as before, but instead of having a
designated substitute, it should be given a list of alter­
nates from which to pick each time the need arises.

TO MAD :KEY :ALT :CONTEXT

Terrapin Logo Tutorial W-103

Words and Lists

W-104

The stop rule would be the same.

IF :CONTEXT= []OUTPUT[]

And if there's no substitution to make, the action is the
same.

OP SE FIRST :CONTEXT MAD :KEY :ALT BF :CONTEXT

Only when a KEY is found must MAD behave differ­
ently from SUBST. Compare the corresponding lines.

IF (FIRST :CONTEXT)= :KEY OP SE :NEW SUBST :KEY :NEW
BF :CONTEXT

IF (FIRST :CONTEXT)= :KEY OP SE PICK :ALT MAD :KEY :ALT
BF :CONTEXT

SUB ST is given a fixed substitute as input, whereas
MAD picks the alternate itself whenever it needs to.
Otherwise, they are identical.

Here is the finished procedure:

TO MAD :KEY :ALT :CONTEXT
IF :CONTEXT= []OUTPUT[]
IF (FIRST :CONTEXT)= :KEY OP SE PICK :ALT MAD :KEY

:ALT BF :CONTEXT
OP SE FIRST :CONTEXT MAD :KEY :ALT BF :CONTEXT

END

And here are some examples of its use.

MAD "NAME PEOPLE [NAME KISSED NAME]
MAKE "ADVERBS [STEALTHILY CREATIVELY [WITH EXCEP­

TIONAL SPEED] HUNGRILY]

Terrapin Logo Tutorial

Words and Lists

MAD "ADV :ADVERBS [DOGS DO NOT CLIMB TREES ADV OR
ADV]

MAD "V ACTIONS [PAT V CHRIS, BUT DALE V DANA.]

More can be done with MAD. Since MAD creates and
outputs an object (rather than just printing its finished
product), that object can be processed further. Try this:

MAD "NAME PEOPLE [NAME V NAME]

The object it produced is something like [SANDY V
THE TURTLE]. If this object were made the input to
MAD, the V could be replaced with some action. This
can be done in one step.

MAD "V ACTIONS MAD "NAME PEOPLE [NAME V NAME]

The output from MAD "NAME PEOPLE [NAME V
NAME]becomes the third inputto MAD "V ACTIONS

Try

MAD "ADV :ADVERBS MAD "X PEOPLE MAD "V ACTIONS [X
V AND V X ADV AND ADV]

Projects with Mad-Libs

33. Create a MADLIB procedure that takes one input,
a text, and looks for Verbs, Nouns, Proper Names ,
ADVerbs, and ADJectives to substitute. You might use
[THE ADJ NV MY ADJ N PN ADV] as a test text.

Terrapin Logo Tutorial W-105

Words and Lists

W-106

34. Punctuation in a sentence will interfere with
MAD the way it is now written. For example, MAD ''V
ACTIONS [PAT V CHRIS, BUT DALE V DANA.] will
work, but MAD "PN PEOPLE [PN LOVES PN, BUT PN
CAN'T STAND PN.J will not. (You may want to try it to
see it fail.)

The substitution must be more sophisticated to handle
punctuated sentences. It must look at each word in the
sentence and perform tests to determine if it is a key
word. Then, after choosing an alternative, the proce­
dure must affix the proper punctuation to that new
word.

Write a version of MAD that works correctly in both of
the contexts shown above.

35. As MADLIB is now written, it finds substitutes for
a fixed set of key words. A slightly more versatile pro­
gram would take two inputs, the context (as always)
and a list of key words to look for. Then it would sys­
tematically look through the context for instances of
each of the key words and make the proper substitu­
tions. Write a procedure that will do this.

Understanding Language: Searching for Key
Words and Matching Sentences to Templates.
ALLOF, ANYOF

FRIENDLY, when we last left it, expected a nice, tame
answer to its question, "WHAT'S YOUR NAME?" It
would respond unintelligently if you typed MY
NAME IS PAUL or NONE OF YOUR BUSINESS when
it asked. Here is a scenario that looks more intelligent,
as if FRIENDLY really understands language.

Terrapin Logo Tutorial

FRIENDLY
WHAT'S YOUR NAME?
MY NAME IS PAUL.
HI, PAUL! IT'S NICE TO MEET YOU.

FRIENDLY
WHO ARE YOU?
NONE OF YOUR BUSINESS
YOU SEEM TO BE IN A BAD MOOD. BYE.

FRIENDLY
WHAT'S YOUR NAME?
WHAT'S IT TO YOU?
I WAS JUST CURI DUS.

FRIENDLY
MY NAME IS LOGO. WHAT'S YOURS?
PLEASE CALL ME PAUL.
GOOD TO SEE YOU AGAIN, PAUL.

FRIENDLY
HI, WHAT'S YOUR NAME?
PAUL
AH, YOU'RE BACK. HI, PAUL.

Words and Lists

FRIENDLY is exhibiting a number of behaviors we re­
gard as intelligent. It is not confused by punctuation.
Also, its phrasing is flexible. But, most important, it
has always responded appropriately.

How can we design it so that it will reliably recognize
the name in an arbitrary phrase? We might start by try­
ing to figure out how people do that.

Terrapin Logo Tutorial W-107

Words and Lists

W-108

Do we listen to all the words in the sentence and look
up each one on a list of possible names? Unlikely. If a
Martian said to you, "Hi, my name is Xqpsnpfltk," you
might not be able to repeat the name, but you'd know
you were being told one.

You'd know because you understood the rest of the
sentence and realized that whatever that sound was
that came at the end, that had to be this creature's
name.

All is not hopeless. Although we cannot expect to
write a procedure that is capable of understanding all
of English, we can analyze the likely language that this
particular conversation will contain.

If the procedure encounters something we have an­
ticipated, it can give a specific appropriate answer.
Otherwise, it will have to give a neutral answer.

Here's how it might work. First we list some possible
phrases it may see. One limitation we will impose is
that people always respond only with their first name,
and not with first and last, or title and last, etc. (That
complication comes later.)

Cooperative responses might include:

<name>
My name is <name>
People call me <name>
Please call me <name>
<name> is my name
Iam<name>

Terrapin Logo Tutorial

Words and Lists

Uncooperative responses should include:

None of your business!
I won't tell you.
I don't want to tell
I'm not telling you.
What's it to you?
Go away

Let's work with the cooperative responses first. Sup­
pose we create a series of templates based on likely
response patterns. If we had a procedure that could
match what the person types to each of the templates,
and, where it found a match, record what word corre­
sponded to the "wild card" <name>, that would be a
big help.

For example, suppose we had a procedure MATCH?
which would tell if a sentence matched a template. For
example, the actual sentence

MATCH? [MY NAME IS PAUL]

used with the template

[MY NAME IS @NAME]

with the wild card identified by the at-sign, would
give the result TRUE.

Suppose, furthermore, that if the sentence and
template do match, then the matching word in the
sentence (in this case, PAUL) and the name of the wild
card it corresponded to (in this case, there is only
one, @NAME) are saved in a special variable named
@@MATCHES. Then, after this match,

Terrapin Logo Tutorial W-109

Words and Lists

W-110

@@MATCHES would have the value [[@NAME
PAUL]].

Let's also suppose we have a way of looking for a wild
card in this list and outputting the word associated
with it; thus LOOKUP "@NAME would output PAUL.
Ifwe had such procedures, then we could write a lan­
guage understander that looked like this.

TO OUTPUT.NAME :SENT
IF MATCH? :SENT [MY NAME IS @NAME] OP LOOKUP "@NAME

:@@MATCHES
IF MATCH? :SENT [@NAME IS MY NAME] OP LOOKUP "@NAME

:@@MATCHES
IF MATCH? :SENT [I AM @NAME] OP LOOKUP "@NAME
:@@MATCHES
IF MATCH? :SENT [@JUNK CALL ME @NAME] OP LOOKUP

"@NAME :@@MATCHES
IF 1 = COUNT :SENT OP FIRST :SENT
OP [I WAS JUST CURIOUS]

END

The first three lines explain themselves. If the sentence
typed by the person to FRIENDLY is of any of those
forms, a match will occur, and LOOKUP will find the
name.

The fourth line has two wild cards in it. It takes care of
both PLEASE CALL ME PAUL and PEOPLE CALL ME
PAUL.

The fifth line assumes that if the person answers with
only a single word, that word is probably the name.
And the sixth line is a "punt." If no other strategy
worked, this answers "neutrally" with a nothing
answer.

Terrapin Logo Tutorial

Words and Lists

There are some problems with this procedure as it was
written. The most striking is that it can supply either
the right answer (a name) which must then be tucked
into some reply by GREET (depending , for example,
on whether GREET has met the person before or not) or
an entire reply which should not be further altered.

GREET, of course, can tell the two situations apart, as
the name is a word, and the full reply is a list.

Second, we have not dealt at all with the "uncoopera­
tive responses." More on those later. Meanwhile, how
do MATCH? and LOOKUP work?

MATCH? will need two inputs-the sentence in ques­
tion , and the template to check it against.

TO MATCH? :SENTENCE :TEMPLATE

It will need to make sure that the variable @@MATCHES
is cleaned out before checking to see if the sentence
matches the template.

MAKE @@MATCHES[]

Finally, it performs the check.

OP CHECK :SENTENCE :TEMPLATE

So the procedure looks like this:

TO MATCH? :SENTENCE :TEMPLATE
MAKE "@@MATCHES []
OP CHECK :SENTENCE :TEMPLATE

END

Terrapin Logo Tutorial W-111

Words and Lists

W-112

But, we've put off the major part of the work! How does
CHECK check?! It, too, must take both the sentence
and template as inputs.

TO CHECK :S :T

If these two do match, it should output TRUE. If they
don't, it should output FALSE. (This is not, of course,
all it does. It must also identify what element of the
sentence corresponded to the "wild card" in the
template, but we will worry about that later.) A trivial
case of matching is when both the sentence and the
template are empty.

IF ALLOF :S = [] :T = [] OP "TRUE

If they are not both empty, but one of them is empty,
then they surely do not match.

IF ANYOF :S = [] :T = [] OP "FALSE

If the first element of the sentence and the first element
ofthe template are the same, then a match is possible,
but not definite. In this case, the answer is to be found
in checking the remaining elements of the sentence
and the template for a match.

IF (FIRST :S) = FIRST :TOP CHECK BF :S BF :T

Likewise, if the first element of the template is a wild
card, then a match is possible, but not definite. Again,
the answer is to be found in checking the remaining
elements of the sentence and the template for a match.

Terrapin Logo Tutorial

Words and Lists

In this case, however, the procedure must do one
additional thing. It must record what the first element
of the sentence was when it encountered the wild card
as the first element of the template.

IF WILD? FIRST :T (RECORD FIRST :T FIRST :S) OP CHECK BF
:S BF :T

Notice that both WILD? and RECORD are just tossed in
there as if we already knew how they should work. We
don't , and Logo has no such primitives to help us with,
but we can design those procedures later.

At present, all we are trying to do is handle the top
level logic of CHECK. Surely, if WILD? and RECORD
existed, this line would be what we want.

Finally , if the first of T is neither wild nor matches the
first of S, then there is no match , so we output FALSE.

This is how the procedure looks so far.

TO CHECK :S :T
IF ALLOF :S = [] :T = [] OP "TRUE
IF ANYOF :S = [] :T = [] OP "FALSE
IF (FIRST :S) = FIRST :TOP CHECK BF :S BF :T
IFWILD? FIRST :T(RECORD FIRST :TFIRST :S) OP CHECK BF

:S BF :T
OP "FALSE

END

Terrapin Logo Tutorial W-113

Words and Lists

W-114

What WILD? does depends on how we choose to indi­
cate a wild card. Since we have decided that wild cards
begin with the at-sign character, WILD? need only
check for that character as the first character of its
input.

TO WILD? :WORD
OP"@= FIRST :WORD

END

RECORD creates a list of the key and the matched
word, and tucks that list into @@MATCHES to be
retrieved when needed by LOOKUP.

TO RECORD :KEY :MATCHEDWORD
MAKE "@@MATCHES LPUT LIST :KEY :MATCHEDWORD
:@@MATCHES

END

And LOOKUP will look systematically through each
element of@@MATCHES until it finds one whose
first element is the key word. It will then output the
second element. Notice how similar its structure is to
the model recursive procedures you have seen before.

TO LOOKUP :KEY :LIST
IF :LIST= []OP"
IF :KEY= FIRST FIRST :LIST OP LAST FIRST :LIST
OP LOOKUP :KEY BF :LIST

END

Terrapin Logo Tutorial

Words and Lists

Now try running OUTPUT.NAME a few times.

OUTPUT.NAME [MY NAME IS ASHER]
OUTPUT.NAME [PLEASE CALL ME ISHMAEL]
OUTPUT.NAME [WHATS IT TO YOU?]
OUTPUT.NAME [PAUL]

Projects with Language Understanding

36. Add OUTPUT.NAME to the FRIENDLY program.
FRIENDLY must still be capable of responding differ­
ently to old people and new people, and must have the
added ability to pull names out of the contexts in
which they are typed. Do not yet worry about other de­
tails (e.g. punctuation) yet.

37. To add a bit more sensitivity to the uncooperative
responses, you might design a procedure that looks for
"negative words" in the sentence, words like WON'T,
NONE, DON'T, NOT, and the like, and outputs a "neu­
tral" response to a negative.

Such a response might be YOU SEEM TO BE IN
A BAD MOOD, or SORRY I ASKED. Add that to
OUTPUT.NAME in such a way that no other changes
need to be made to GREET or FRIENDLY.

38. Wherever fixed phrases are now used, teach the
program to vary them using PICK and a phrase list. If it
is necessary to embed the name in a phrase, SUB ST
can do the work.

Terrapin Logo Tutorial W-115

Words and Lists

W-116

39. Finally, fix the program not to get stumped by
punctuation.

40 . As CHECK is currently written, [MY NAME IS
@NAME] would match [MY NAME IS ASHER] but
would not match [MY NAME IS ASHER LEV] because
only one word can match a wild card.

Likewise, [@JUNK CALL ME @NAME] would not
match [CALL ME ISHMAEL], because some word
must be present to match @JUNK.

A better CHECK program would recognize two kinds
of wild cards , one that matches to exactly one word in
the sentence (the situation we already have), and
another that matches to any number of words in the
sentence, including O.

The new wild card would have to be symbolized dif­
ferently, perhaps by a number-sign prefix. So CHECK
would be able to tell that both CALL ME ISHMAEL and
MY CLOSE FRIENDS CALL ME SIR OLIVER match
the template [#JUNK CALL ME #NAME], but that
[MY NAME IS HARRIET BEECHER STOWE] fits
another template.

Terrapin Logo Tutorial

J

)

~MUSIC

The music chapter of this tutorial assumes that you are
familiar with your Apple keyboard and some Logo
primitives (commands Logo already knows). For ex­
planations of commands and concepts not explained
in detail here, see the Graphics chapter. In addition,
the Technical Manual lists all Logo primitives and
their uses.

Some background: a Logo procedure is a series of in­
structions to the computer stored for recurrent use. A
procedure can be used in other procedures just as if it
were a Logo primitive.

Procedures are stored in files on disks. The SAVE
command stores the entire contents of the workspace
to the disk as a file with the name which you give it.
See the Saving Procedures section in the Graphics
chapter. Care should be taken to SAVE work before
turning the computer off, as this clears the workspace.

Preparation:READ

The Utilities disk contains the procedures required to
make music in Logo, as well as the demonstration pro­
cedures we shall use. Start Logo as described in the
Beginning in Logo chapter. Then insert your copy of
the Utilities disk. Type

READ "MUSIC <RETURN> (only one quote)

(Logo does not hear what you type until you press the
<RETURN> key.)

Wait for the light on the disk drive to go off and the
question mark prompt to appear on the screen.

Terrapin Logo Tutorial M-1

Music

M-2

There are three music files on the Utilities disk. You
have just read one file, MUSIC, into the workspace.
MUSIC automatically reads in another of the music
files called MUSIC.BIN, which contains the machine­
language routine which does the actual work of
making the Apple produce a sound. The third file is a
demonstration file called TWINKLE, which will be
used later.

To start, we will experiment with pitch and duration,
concepts with which most people are familiar.

Duration

Duration is usually thought of as how long a note is
held. (You could also think of it as the time from the
beginning of one note to the beginning of the next.) To
start, let's use a procedure named TONE which plays a
note for a specified duration. Type

TONE 40
TONE 80
TONE 80 TONE 80
TONE80TONE40TONE80

Typing TONE over and over gets tiresome. To save
yourself work, try using the REPEAT command . For
instance:

REPEAT 10 [TONE 40]
REPEAT 10 [TONE 20]
REPEAT 10 [TONE 20 TONE 40]

Terrapin Logo Tutoria l

Music

There is an even better way: the TONES procedure.
TONES takes a list of durations to play. (A list for Logo
is any list of items enclosed in square brackets.) Type

TONES [40 40 40 40]
TONES [80 80 80 80]
TONES [40 80 40 80 40 80]

You have probably noticed that the numbers for dura­
tions are related in a special way. For instance, a dura­
tion of 80 is twice as long as one of 40 and similarly, 60

is twice as long as a duration of 30. Try typing

TON ES [80 80 80 80 40 40 40 40]
TONES [30 30 30 30 60 60]
TONES [40 40 20 20 40]
TONES [80 80 40 40 80]

Notice that the last two examples sound the same
except that the last one goes slower. Another way of
saying this is that the relative durations of the last
two examples are the same.

If you know the symbols used in music notation, you
will see that they relate to each other in a manner simi­
lar to that of the numbers we have been using. If 40
were used as a whole note, then 20 would be a half
note, 10 a quarter note and 5 an eighth note.

Of course, we could have used another number instead
of 40 as our whole note. If we made 60 a whole note,
then 30 would be a half note, and 15 a quarter note.
Using 40 as the whole note instead of 60 will speed up
the tempo.

Terrapin Logo Tutorial M-3

Music

M-4

You don't have to change the durations to be able to
change the tempo (the speed at which the piece is
played). The procedure TEMPO allows you to do this.
(The default value for TEMPO is 100.) Speeding up or
slowing down the tempo will make the durations
sound shorter or longer, but each duration will still
have the same relation to the other durations as it did
before. Try

TONES [80 80 40 40 80]
TEMPO 50
TONES [80 80 40 40 80]
TEMPO 100
TONES [80 80 40 40 80]

You can use TONES to create any rhythm you want.
For example, try

TON ES [80 40 40 80 40 40 80]

You can use <CTRL> P to bring back copies of the pre­
vious line so that it will play several times in a row .
However, let's use REPEAT instead.

REPEAT 3 [TONES [80 40 40 80 40 40 80]]
REPEAT3 [TONES [601515601515 60]]

Notice how the beats seem to regroup when you
REPEAT these patterns several times instead of play­
ing them just once.

You can vary the duration within a wide range. Num­
bers higher than 1000 can be ·used but a duration of
1000 is very long. You can also use decimal numbers as
well as whole numbers for durations .

Terrapin Logo Tutorial

Music

Pitch

Now let's try varying the pitch while keeping the dura­
tions constant. To do this we use a different procedure
named PLAY, which takes as input a list of pitches and
a list of durations. The first duration is paired with the
first pitch, the second duration with the second pitch
and so on. Type

PLAY [1 2 3 4 5 6][40 40 40 40 40 40 40]

(Notice that there is an extra duration in the second
list. Logo ignores extra durations in input lists, but it
will give an error if there are more pitches than dura­
tions.)

Each pitch is a half step higher than the one before.
This is called the chromatic scale. An octave is divided
into twelve pitches, each a half step apart. The num­
bers below correspond to the more common musical
notation as follows.

1 2 3 4 5 6
C C# D D# E F

7 8 9 10 11 12 13
F# G G# A A#B C

You should notice that the letters that are not followed
by a# sign (read sharp sign in music notation) corre­
spond to the white keys on the piano. The numbers
that are paired with these letters (1, 3, 5, 6, 8, 10, 12,
and 13) make the C major scale. You can make a major
scale starting with any number using the same rela­
tions among the numbers as in the C major scale.

CMajorScale 1 3 5 6 8 10 12 13
D Major Scale 3 5 7 8 10 12 14 15

Terrapin Logo Tutorial M-5

Music

M-6

An interesting project for more advanced users is to
make a procedure that will generate a major scale start­
ing on any pitch. The major scale is one of the diatonic
scales. Try typing

PLAY [1 3 5 6 8 10 12 13][30 30 30 30 30 30 30 30 30]
PLAY [3 5 7 8 10 12 14 15][30 30 30 30 30 30 30 30 30]

Notes are numbered from 1 to 24. However, adding a
plus sign (+)to a number will make the note one oc­
tave higher. Similarly, adding a minus sign makes the
note an octave lower.

For instance, 1 + is an octave higher than 1. (Do you see
that 1 + is the same as 13 ?)

Try your own combinations of pitches and durations
with PLAY. The pitches can only be whole numbers,
but you can use any number, even a decimal or frac­
tion, for durations.

There is also a procedure named SING which takes
only a list of pitches and plays each with a constant
duration. If you are experimenting with just pitches,
this procedure will save you a lot of typing. The two
PLAY commands above could easily have been done
instead as

SING [1 3 5 6 8 10 12 13]
SI NG [3 5 7 8 10 12 14 15]

Rests are another feature which you can use with PLAY
or SING. Type in the letter R in place of one of the

Terrapin Logo Tutorial

Music

pitches, and no sound will be played for the duration
corresponding to that pitch. Type

PLAY [1 + 1 + R 1 + R 1+][4040 40 40 40 40]
SING[1+ 1+ R1+ Rl+J

Procedures

Typing everything out each time can become tiresome,
even if you do make use of <CTRL> P and the REPEAT
command. Writing procedures will allow you to keep
a record of the tunes you create.

For instance, to make a comparison of the chromatic
and major scales easier, you might want to create the
two following procedures so you can play them again
easily in any order you want.

TO C
PLAY [1 2 3 4 5 6 7 8 9 10 11 12 13]

[30 30 30 30 30 30 30 30 30 30 30 30 30]
END

TOM
PLAY [1 3 5 6 8 10 12 13]

[30 30 30 30 30 30 30 30]
END

Here is a neat way of turning a PLAY statement into a
procedure.

a. Find a tune you like using PLAY.
b. Press <CTRL> P to print it out again, but do not

press <RETURN>.

Terrapin Logo Tutorial M-7

Music

M-8

c. Use <CTRL> A to move the cursor to the beginning
of the line.

d. Type the name of your procedure, e.g. TO TUNE1,
followed by a space. The rest of the line will move to
the right as you insert new words.

e. Press <RETURN>. You will be in EDIT mode with
everything you typed on the first line (the title line).

f. Move the cursor to the space between the title and
the word PLAY.

g. Press <RETURN>. The part of the line to the right
of the cursor will move down to the next line.

h. Press <CTRL>C to define your procedure.
i. Type the procedure name (e.g. TUNE1) to play it.

Following is an example of a procedure that will give
you quick feedback, which is useful if you are trying to
pick out a tune.

TO QUICK
PLAY (LIST RC) [15]
QUICK
END

Type QUICK to start the procedure and <CTRL>G
when you want to stop it. Now typing any single digit
number (except 0) will play a note.

It is useful to make procedures that will play phrases or
pieces of a song. We will call these tune blocks. Then
you can link these tune block procedures together to
make the whole song, like putting together the blocks
in a jigsaw puzzle. As an example, type

TO BELLl
PLAY[5+ 1+ 3+ 8][80808080]
END

Terrapin Logo Tutorial

Music

Now type BELL1 if you haven't already. The tune is
part of Westminster Chimes. So far we only have the
first part of it and the rhythm doesn't seem quite right.
Try increasing the duration of the last note to see if that
sounds better. Instead of trying to add the entire tune
into the procedure BELL1, you can break it up into
blocks and write a superprocedure which uses them.
This also allows you to use any of the blocks over
again. The superprocedure could look like this:

TO BELL
BELLl
BELL2
BELL3
BELL2
END

So far we have BELL 1. The following procedure makes
the third block in the tune.

TO BELL3
PLAY [5+ 3+ 1 + 8][80 80 80 160]
END

Notice that the only change is that two of the pitches
are reversed, but even a small change makes an impor­
tant difference. We leave BELL2 to you to create. (Hint:
Try rearranging these same pitches in another way,
keeping the durations in the same order.)

For a similar example, read in the file TWINKLE by
typing

READ "TWINKLE

Terrapin Logo Tutorial M-9

Music

M-10

You have probably already guessed what tune this file
will play. If you haven't, or even if you have, type
STAR. Type PO STAR to see what the superprocedure
looks like. Each of the subprocedures for STAR is a
tune block.

TO STAR
STARl
STAR2
STAR3
STAR3
STARl
STAR2
END

The STAR superprocedure is designed in the same
way as the BELL superprocedure. If you print out
STAR1, STAR2, and STAR3, you can see that each uses
the procedure RHYTHM1 to specify its duration list.
Notice what happens if you change the rhythm

from [40 40 40 40 40 40 120]
to [60 20 60 20 60 20 120]

You can still recognize the original tune but this makes
a varied version of it. It works because each pair of 40's
is changed to 60 and 20, and both 40+40 and 60+20
add up to 80. Notice that it sounds like a waltz now in­
stead of a march. Try reversing the 60 and the 20 so it is
20 60 20 60 20 60 120. It sounds strange, right, almost
like a new tune? This is because the durations make
the pitches group together in a different way.

Terrapin Logo Tutorial

Music

Try playing STAR1, 2 and 3 in various orders to see if
you can make a new tune. Don't forget the possibility
ofrepeating the same block twice. Here is one example
of a different tune.

STAR3STAR2STAR1 STARl STAR3STAR2

You already know what the durations are for STAR1.
Now, see if you can figure out what the pitches are
without looking. The only pitches you will need are 1,
3, 5, 6, 8, and 10, pitches in the C Major Scale. To exper­
iment, use the QUICK procedure shown earlier.

Try creating tune blocks for other tunes that you know.
Instead of numbering the blocks in the proper order,
pick a random order and see if your friends can figure
out how the blocks fit together. Most familiar tunes use
only the pitches of a major scale.

Analyses of the Utilities Disk Music
Procedures: STOP, FIRST, BUTFIRST (BF),
THING, WORD, Top Level

PLAY: a recursive procedure to play a list of notes with
a list of durations.

TO PLAY :PITCHES :OURS
IF EMPTY? :PITCHES STOP
PLAY.NOTE (FIRST :PITCHES) (FIRST :OURS)
PLAY (BF :PITCHES) (BF :OURS)
END

Terrapin Logo Tutorial M-11

Music

M-12

Line 1: title, including the local variables :PITCHES
and :DURS, which represent values input when the
procedure is run.

Line 2: IF-THEN statement without the optional
THEN. Line 2 says IF it is true that there are no more
pitches to be played (i.e. the list :PITCHES is empty,
THEN STOP running this procedure and return con­
trol to whatever called it, which might be another pro­
cedure or the user (also called "top level").

Line 3: Run the procedure PLAY.NOTE, using for
inputs the first elements of the lists :PITCHES and
:DURS. The local variables in the title line of PLAY.NOTE,
:PERIOD and :DURATION, are given the values
FIRST :PITCHES and FIRST :DURS, respectively.

Line 4: Run PLAY again, using the rest of the list
:PITCHES and the rest of the list :DURS as the two
inputs.

BF is short for BUTFIRST. BF :PITCHES is the list
:PITCHES without its first element. USing BF recur­
sively, as it is used here, enables one to work through a
list element by element. The procedure will stop in
Line 2 when the list is exhausted.

Use of the list operators FIRST and BUTFIRST is
explained in the Words and Lists chapter.

Terrapin Logo Tutorial

Music

TONE, TONES, SING: All these procedures are special
versions of PLAY. Note that TONE and SING use the
primitive SENTENCE (SE) to put information into a
list before passing it to PLAY, which requires lists for
its inputs.

For a full discusion of SENTENCE, see the Words and
Lists chapter.

PLAY.NOTE: a procedure to play one note.

TO PLAY.NOTE :PERIOD :DURATION
MAKE "PERIOD THING WORD"# :PERIOD
.CALL.2 :TONE :PERIOD :DURATION*:BASE.PERIOD

/:PERIOD
END

Line 1: The title, including the local variables :PERIOD
and :DURATION.

Line 2: Line 2 pastes a# onto the front end of the
:PERIOD brought into the procedure. The Logo primi­
tive WORD makes one word out of# and whatever
came in as :PERIOD; for instance,# and 5 make #5.

The THING of a variable is the value associated with
that name. THING "PERIOD is the same as :PERIOD.
THING is used when there is no actual variable name
to put the dots on.

MAKE gives this value to the global variable :PERIOD.

Terrapin Logo Tutorial M-13

Music

M-14

Line 3: Runs the procedure .CALL.2 using the follow­
ing for inputs:
For :ADDR-the value of the global variable :TONE

(defined by SETUP)
For :INPUT1-the value of the local variable :PERIOD
For :INPUT2-a value obtained by the calculation

shown

Harmon y: The Terrapin Music System

The Terrapin Music System, available separately,
gives the user the ability to create 6-partharmony over
a six-octave range, as well as some rhythm sounds. The
Music System uses the techniques described in this
tutorial, plus primitives and procedures for putting the
voices together.

Terrapin Logo Tutorial

PPENDIX

)

)

WAPPENDIX

ERROR MESSAGES

Error messages are Logo's way of trying to help the
user find errors, those things which Logo does not
understand. They may be misspellings or wrong usage.

The list of error messages, as given here, is divided. In
both parts, capital letters indicate the unchanging part
that Logo types to you; what is in the parentheses will
vary depending on the circumstances. Both parts of
the list are alphabetical according to the first unchang­
ing word.

The first part of the list includes those messages which
will start with different words at different times; here
you must look for that part of the message after the
variable portion.

The second part includes the messages that always
start out the same way.

PARTI

lword) CAN BE USED ONLY INSIDE PROCEDURES

Example:

PR:X
LABELS CAN BE USED ONLY INSIDE PROCEDURES

You meant to type PR :X. Logo sees PR: which is the
form of a label (used with GO). It does not infer the
missing space between PR and :X.

Terrapin Logo Tutorial A-1

Appendix: Error Messages

A- 2

(command) CANNOT BE USED INSIDE THE EDITOR

This occurs only when (in EDIT mode) you type text
which, when you leave the editor and it is executed,
will interfere with the rest of the edit buffer text. Very
rare bird indeed.

(procedure) DIDN'T OUTPUT

Example:

FORWARD SQUARE 5
SQUARE DIDN'T OUTPUT

SQUARE FD 100
FD DIDN'T OUTPUT

This occurs when Logo cannot find the input for some­
thing that requires an input, either a procedure or a
primitive. (It looks at the next thing on the line and
complains that it didn't get anything from that thing to
use as an input. To produce something that could be
used as an input, that thing would have to output it.)

What it usually means is that you forgot to type the
input Logo was looking for.

(primitive) DOESN'T LIKE (data) AS INPUT

Example:

PRINT 5 * "SIDE
*DOESN'T LIKE SIDE AS INPUT

Terrapin Logo Tutorial

Appendix: Error Messages

This occurs when you try to do an operation on the
wrong type of data. Here Logo is trying to multiply a
name (specified by") instead of a value (specified by:).

(primitive) DOESN'T LIKE (data) AS INPUT.
IT EXPECTS TRUE OR FALSE

Example:

IF 2 THEN PRINT 5
IF DOESN'T LIKE 2 AS INPUT. IT EXPECTS TRUE OR FALSE

The primitives IF, NOT, ALLOF, and ANYOF expect
only expressions which will evaluate to TRUE or
FALSE, such as :X = 3 (which is either true or false).
You probably neglected to type the rest of the test.

(message). IN LINE
(line)
AT LEVEL (level) OF (procedure name)

Example:

THERE IS NO PROCEDURE NAMED FD100, IN LINE
FD100
AT LEVEL 1 OF SQUARE

The (message) here is another error message, with this
larger message pinpointing the location of the error, by
printing the line, level, and procedure in which it
occurred.

Terrapin Logo Tutorial A- 3

Appendix : Error Messages

A-4

(name) IS A LOGO PRIMITIVE

Example:

FIRST IS A LOGO PRIMITIVE

Logo reserves the words which are Logo primitives
and does not allow them to be used as procedure
names. Choose another name for your procedure.

(procedure) NEEDS MORE INPUTS
(primitive) NEEDS MORE INPUTS

Examples:

SQUARE NEEDS MORE INPUTS
FD NEEDS MORE INPUTS

SQUARE required more inputs than were used; FD
was used without an input. With a procedure, this can
happen when the second input is negative and is used
without parentheses. The parentheses are necessary to
distinguish a second input from a first input obtained
by subtraction.

(arithmetic-operator) NEEDS SOMETHING BEFORE IT

Example:

PRINT/ 8
/ NEEDS SOMETHING BEFORE IT

The number to be divided by 8 is omitted.

Terrapin Logo Tutorial

Appendix: Error Messages

(primitive) SHOULD BE USED ONLY INSIDE A PROCEDURE

Example:

OUTPUT SHOULD BE USED ONLY INSIDE A PROCEDURE

OUTPUT, STOP, and GO cannot be used in immediate
mode (top level). They have meaning only in a proce­
dure.

CAN'T DIVIDE BY ZERO

Example:

PRINT :X / :Y
CAN'T DIVIDE BY ZERO

PART II

:Y is (no doubt inadvertently) zero. This message oc­
curs with QUOTIENT, REMAINDER, and/. Get around
this by testing :Y to see if it is zero before the division.

DISK ERROR

Example:

CATALOG
[]- -DISK ERROR

The Logo Language Disk files cannot be listed with
CATALOG. You will also get this message when you
try to access a disk with no disk in the disk drive, or
try to SA VE to a protected disk.

Terrapin Logo Tutorial A-5

Appendix: Error Messages

A-6

END SHOULD BE USED ONLY IN THE EDITOR

Example:

PRINT 5 END
END SHOULD BE USED ONLY IN THE EDITOR

You have done one of these things:
1. tried to use END in IMMEDIATE mode
2. put END on a line with something else in a proce-

dure
3. put it in the list used by the Logo primitive DEFINE.

ELSE IS OUT OF PLACE

Example:

PRINT 5 ELSE PRINT :C
ELSE IS OUT OF PLACE

ELSE has no meaning in this context. It must be used
in an IF ... THEN ... ELSE statement.

FILE NOT FOUND

Example:

READ "NUSIC
FILE NOT FOUND

NU SIC is not a file on the disk in the disk drive.
(MUSIC might be.) Check your spelling with this one
before despairing. Type CATALOG to see what IS on
the disk.

Terrapin Logo Tutorial

LINE GIVEN TO DEFINE TOO LONG
LINE GIVEN TO REPEAT TOO LONG
LINE GIVEN TO RUN TOO LONG

Appendix: Error Messages

You have exceeded the maximum length of a line used
by DEFINE, REPEAT, or RUN, which is 256 characters.

MISSING INPUTS INSIDE O'S

Example:

(FORWARD)
MISSING INPUTS INSIDE O'S

The procedure or primitive in the () was used with too
few inputs.

NO STORAGE LEFT!

You have used up all the storage. The exclamation
mark means this is very unusual. Erase some unneces­
sary procedures. If this doesn't help, SAVE the work­
space and type GOODBYE.

NUMBER TOO LARGE OR TOO SMALL

An arithmetic operation has resulted in a number too
large or too small for Logo, i.e. greater than 10 ** (38)
or less than 10 ** (-38). Use different numbers.

PROCEDURE NESTING TOO DEEP

You have exceeded the limit for nesting procedures
(which is over 200). This will be rare. Send a copy of
your procedure to Terrapin, Inc. for its museum of the
unusual.

Terrapin Logo Tutorial A-7

Appendix:: Error Messages

A-8

RESULT: ldata)

Example:

12 * 10
RESULT: 120

Besides giving you a quick way to calculate, Logo is
also telling you that you have not specified what is to
be done with the results of the computation. This is
important to note if you are intending to use the line in
a procedure.

THE : IS OUT OF PLACE AT !something)

Example:

PRINT X:
THE : IS OUT OF PLACE AT X

The : has no meaning in this position. Logo realizes
that PRINT expects an input, and sees the : which, in
the right place, denotes a variable. You probably meant
:X.

THE DISK IS FULL

Example:

SAVE "NEWMUSIC
THE DISK IS FULL

When the disk is full and Logo will not save your work­
space, you have several choices.
1. You can type CATALOG, locate a file you no longer

need, and erase it with ERASEFILE;

Terrapin Logo Tutorial

Appendix: Error Messages

2. You can use another disk which is not full;
3. You can trim the amount you are saving by erasing

procedures from your workspace.

THE DISK IS WRITE PROTECTED

You tried to write on a write-protected disk. This might
mean you forgot to remove the Language Disk.

THE FILE IS LOCKED

Example:

ERASEFILE "MUSIC
THE FILE IS LOCKED

Locking a file is a way to protect it from inadvertent
erasing. However, do not lock a file you will be chang­
ing; you can READ from locked files, but you cannot
SAVE to them.

The file cannot be erased while it is locked. To lock or
unlock a file on a disk, use FID on the Utilities Disk.

Type CATALOG to list the files on the disk. Files with
* before them are locked.

THEN IS OUT OF PLACE

Example:

PRINT 5 THEN PRINT 6
THEN IS OUT OF PLACE

THEN has no meaning in this context. THEN must be
used in an IF ... THEN statement.

Terrapin Logo Tutorial A-9

Appendix: Error Messages

A-10

THERE IS NO LABEL (whatever you used)

Example:

THERE IS NO LABEL QUAD

You have used GO to go to a label that is not specified
in the procedure. You can avoid this by not using GO.
To fix it, add the missing label to your procedure.

THERE IS NO NAME (whatever you used)

Example:

PRINT :X
THERE IS NO NAME X

X has not been defined, or is used only in a procedure
and is local to it. This will also occur if you forget to
list the variables in the title line of a procedure.

THERE IS NO PROCEDURE NAMED (whatever you typed)

Example:

THERE IS NO PROCEDURE NAMED FD100

When Logo does not recognize a primitive, it looks for
a procedure name. Mis-typing accounts for most in­
stances of this message; forgetting to read in the file is
another possibility.

Terrapin Logo Tutorial

Appendix: Error Messages

THERE'S NOTHING TO SAVE

Example:

SAVE "MYSTUFF
THERE'S NOTHING TO SAVE

There are no procedures or global variables in the
workspace to save. Logo would rather tell you now
than have you be disappointed when you read the
(empty) file back in from the disk.

TOO MANY PROCEDURE INPUTS

You have exceeded the limit on procedure inputs
(which is over 200). This will be exceedingly rare.
Send a copy of the procedure which generated this
message to Terrapin, Inc. for its museum.

TOO MUCH INSIDE PARENTHESES

Logo uses this when it cannot figure out some paren­
thesized expression. Interior parentheses may be incor­

rectlv placed.

TURTLE OUT OF BOUNDS

Example:

FD 200
TURTLE OUT OF BOUNDS

In NOWRAP mode, the turtle would go off the screen
if it moved, so it doesn't move.

Terrapin Logo Tutorial A-11

Appendix: Error Messages

A-12

UNRECOGNIZED DOS COMMAND

Example:

DOS [TICKLE]
[TICKLE)-UNRECOGNIZED DOS COMMAND

Either the Apple does not like the file name specified
in a READ or SAVE command, or an invalid command
was used with the Logo DOS primitive.

YOU DON'T SAY WHAT TO DO WITH (data)

Example:

YOU DON'T SAY WHAT TO DO WITH 25, IN LINE
:SIDE* :SIDE
AT LEVEL 1 OF SQUARE

The line is missing a command such as OUTPUT,
PRINT, FORWARD, etc. This corresponds to RESULT:
in immediate mode. Add the missing instruction (in
the example, perhaps PRINT) to the line.

Terrapin Logo Tutorial

Appendix: Utilities Disk

TIIE TERRAPIN LOGO UTILITIES DISK

Before you begin, make a copy of your Utilities Disk
because it is possible to damage it or erase it acciden­
tally. Put the original away in a safe place. To copy
disks, use the COPYA program on the DOS System
Master Disk that came with your Apple.

All procedures in the files on the Utilities Disk may be
considered to be models, to be analyzed and their ideas
and constructions used. Note particularly the brevity
of Logo procedures, the constant use of subprocedures,
and the use of procedure names which describe the
procedure explicitly.

In addition to serving as models, the procedures in the
files on the Utilities Disk fill a variety of roles.

To Use the Utilities Disk Files

1. Start Logo using the Terrapin Language Disk, then
remove the Language Disk from the disk drive and
put it away.

2. Insert your backup copy of the Utilities Disk into the
disk drive. '

3. To list the files on the disk, type CATALOG.

4. To read a file from the disk, after the ? prompt type

READ "(file name without .LOGO extension)

Terrapin Logo Tutorial A-13

Appendix: Utilities Disk

A-14

Example:

? READ "TEACH (only one quote, please)

Logo will read the file, confirming the presence of each
procedure as it reads it in by printing its name and the
word DEFINED. Example:

? READ "TEACH
TEACHl DEFINED
TEACH DEFINED
?

5. To use the file, type the name of a procedure, as de­
scribed below.

Summary of Utilities Disk Files

Music System Files:

MUSIC.LOGO procedures used and described in the
Music chapter.

MUSIC.BIN machine language program used in
running Logo music.

MUSIC.SRC assembler language and Logo proce­
dure MCODES.

TWINKLE procedures to play "Twinkle,
Twinkle, Little Star."

The music system is an example of
Logo/assembler language interfacing,
explained in Chapter 6 of the Techni­
cal Manual.

Terrapin Logo Tutorial

Appendix: Utilities Disk

Aids to Using Logo:

INSTANT

TEACH

Utilities:

ARCS

CURSOR

DPRINT

Terrapin Logo Tutorial

System of single letter Logo com­
mands which makes Logo graphics
available to non-readers, among oth­
ers. INSTANT and its use are de­
scribed in the Graphics chapter and
Chapter 4 of the Technical Manual.

System of writing Logo procedures
without using the editor. The TEACH
system and its use are described in
this chapter.

Collection of procedures for drawing
arcs with variable radii. Another pro­
cedure for drawing an arc is devel­
oped in the Procedures section of this
tutorial. The ARCS file is described in
this chapter.

Collection of procedures for output­
ting the cursor's position and for plac­
ing the cursor in a specific location.
Described in this chapter.

Collection of procedures for printing
text into disk files. DPRINT is de­
scribed in Chapter 4 of the Technical
Manual. Its use is described in this
chapter.

A-15

Appendix: Utilities Disk

A-16

FID File utility program for deleting, re­
naming, locking, and unlocking files.
FID is described in this chapter and
Chapter 4 in the Technical Manual.

SCREENDUMP Utility for printing graphics screen
using Grappler card. SCREENDUMP
is described in this chapter and in
chapter 2 of the Technical Manual.

SHAPE.EDIT System for changing the shape of the
graphics turtle. This is useful for
games and animation. ROCKETuses
a new turtle shape. How to create
your own turtle shape is described in
Chapter 5 of the Technical Manual.

TEXTEDIT Procedures for using the Logo system
as a text editor. Described in this chap­
ter and Chapter 7 of the Technical
Manual.

Demonstration Programs:

ANIMAL Game which adds your information
about animals to its knowledge base.
Described in this chapter and Chapter
4 of the Technical Manual. The struc­
ture and procedures of this program
are discussed in the section on ad­
vanced use of lists in Logo for the
Apple II, by Harold Abelson, professor
of mathematics at M.I.T.

Terrapin Logo Tutorial

Appendix: Utilities Disk

ANIMAL.INSPECTOR
Procedures for examining the ANI­
MAL knowledge base. Described in
this chapter .

DYNATRACK Game using principles of physics to
simulate a ride around a frictionless
race track. Described in this chapter
and Chapter 4 of the Technical Man­
ual.

INSPI.PICT Picture described in Chapter 4 of the
Technical manual.

ROCKET.AUX
ROCKET.SHAPES
ROCKET

TET

A demonstration of a use for a turtle
with a different shape. The shape was
created with the SHAPE.EDITutilities
program.

Example of a simple recursive proce­
dure which draws a complex design.
Described in Chapter 4 of the Techni­
cal Manual.

Logo Files for Logo/ Assembler Interfacing:

ADDRESSES

AMODES

Terrapin Logo Tutorial

File of names describing addresses in
the Logo interpreter for the assembler.

File of names describing the 6502
addressing modes.

A-17

Appendix: Utilities Disk

A-18

ASSEMBLER Logo assembler procedures.

OPCODES File of names describing the 6502
mnemonics for the assembler.

Chapter 6 in the Technical Manual
describes Logo/ Assembler interfac­
ing.

Color Plott er Utilit y Files

SWEET-P

RS PLOTTER

Procedures for controlling the
Sweet-P Personal Plotter

Procedures for controlling the Radio
Shack 4-Color Plotter

Explanation of Utilities Disk Files

MUSIC, 1WINKLE:
How to Write and Run Logo Music Procedures

See the Chapter MUSIC in this tutorial.

MUSIC.BIN, MUSIC.SRC:
An example of Logo/ Assembler Interfacing

See Chapter 6 in the Technical Manual.

Terrapin Logo Tutori al

Appendix: Utilities Disk

INSTANT: Single Letter Logo Commands

See INSTANT section of the Graphics chapter in this
tutorial.

TEACH:
How to Write Logo Procedures Without Using
the Editor

TEACH is used to define procedures whenever you
want to avoid the complexities introduced by using
the editor.

To define the following procedure using TEACH

TO COUNTDOWN :N
IF :N = 0 STOP
PRINT :N
COUNTDOWN :N-1

END

Type what appears in the usual computer font. What
TEACH prints is in italics.
If there are no inputs, press <RETURN> .

? TEACH
NAME OF PROCEDURE> COUNTDOWN
INPUTS (IF ANY)? : N
< IF : N = 0 STOP
< PRINT :N
<COUNTDOWN :N-1
< END
COUNTDOWN DEFINED
?

Terrapin Logo Tutorial A-19

Appendix: Utilities Disk

A-20

To run COUNTDOWN, type

COUNTDOWN 10

The screen is not cleared when TEACH is used, as it is
when the editor is used. The instructions developed in
IMMEDIATE mode can be copied into a procedure
using TEACH. In GRAPHICS mode, TEXTSCREEN
(< CTRL> T) will show the previous typing, possibly
hidden by the picture. SPLITSCREEN (<CTRL> S)
will return the picture and four lines of text.

WARNING: Reading a file from the disk DOES clear
the screen. Therefore, read TEACH in from the disk
before beginning to type any instructions that you
might want to copy into a procedure using TEACH.

The TEACH system uses two procedures:

TEACH asks for and receives the name of the proce­
dure and any inputs, then passes the information on to
TEACH1. If there are no inputs, just hit <RETURN> .

TEACH1, a recursive procedure, receives the lines of
the procedure (after the prompt<), testing each for
END. When END is received, TEACH1 completes the
defining of the procedure, and passes control back to
TEACH, which announces the procedure defined.

Terrapin Logo Tutorial

Appendix: Utilities Disk

ARCS:
Variable Radii Arc and Circle Procedures

In the Procedure section of this tutorial an additional
variable radius arc procedure is developed.

To use the arc and circle procedures provided on the
Utilities Disk, type the name with numbers for the
inputs required. Examples:

RARC 50 90 for a 90 degree (quarter circle) arc to the
right with a radius of 50.

RARC11 90 for a 90 degree (quarter circle) arc to the
right with a radius of 360/(2 PI) or about
57.2.

RCIRCLE 30 for a circle to the right with a radius of
30.

Substitute LARC, LARC1, and LCIRCLE for arcs and
circles to the left.

ARC Procedures

RARC :RADIUS :DEGREES
Procedure which draws an arc to the right with given
:RADIUS and length :DEGREES. Uses RARC1 . .

LARC :RADIUS :DEGREES
Procedure which draws an arc to the left with given
:RADIUS and length :DEGREES. Uses LARC1.

Terrapin Logo Tutorial A-21

Appendix: Utilities Disk

A-22

RCIRCLE :RADIUS
Procedure which draws a circle to the right with given
:RADIUS. Uses RARC.

LCIRCLE :RADIUS
Procedure which draws a circle to the left with given
:RADIUS. Uses LARC.

RARC1 :SIZE :DEGREES
Procedure which draws an arc to the right with a ra­
dius equal to :SIZE x 360/(2 PI). Uses CORRECTARCR.

LARC1 :SIZE :DEGREES
Procedure which draws an arc to the left with a radius
equal to :SIZE x 360/(2 PI). Uses CORRECTARCL.

CORRECTARCR :SIZE :AMOUNT
Procedure which makes a small correction with each
step of RARC1.

CORRECTARCL :SIZE :AMOUNT
Procedure which makes a small correction with each
step of LARC1.

The CORRECTARC procedures compensate for the
error introduced by trying to make a fractional number
of repetitions in the ARC1 procedures, in the line

REPEAT QUOTIENT :DEGREES 5 [FD :SIZE* 5 RT 5]

Terrapin Logo Tutorial

Appendix : Utilities Disk

CURSOR: Procedures for Character Output
Control; Position, Flashing, Inverse

Character Control Procedures

CURSOR.HY Outputs a list of two elements: the cur­
sor's horizontal position and its vertical
position. Type

CURSOR.HV
RESULT: [O 19]

Logo will respond

CURSOR.H Outputs the cursor's horizontal position.
Type

CURSOR.H
RESULT: 0

Logo will respond

CURSOR.V Outputs the cursor's vertical position.
Type

CURSOR.V
RESULT: 23

Logo will respond

CURSORPOS Requires a two element list of the hori­
zontal and vertical cursor coordinates;
moves the cursor to that position. Type

Terrapin Logo Tutorial

CURSORPOS [23 23]

and the cursor will be placed in the
lower right corner of the screen. [O O] is
in the upper left corner.

A-23

Appendix: Utilities Disk

A-24

FLASHING All characters printed after this com­
mand will flash alternately black on
white, white on black. This includes
what Logo prints as well as everything
typed at the keyboard. Use NORMAL to
restore to white on black. To enter this
mode type

INVERSE

NORMAL

FLASHING

All characters printed after this com­
mand (by Logo or from the keyboard)
will appear in inverse video, black on
white. To enter this mode, type

INVERSE

Restores the normal mode of white on
black. Type

NORMAL

Everything printed after this will be
white on black.

How to Print Text Into Disk Files:
Using DPRINT

Using DPRINT to store files:

The procedures in DPRINT can be used to wr.ite text
into disk files. TEXTEDIT contains procedures for

Terrapin Logo Tutorial

Appendix: Utilities Disk

saving, reading, examining, and printing the files. For
most uses, the TEXTEDIT procedures are more appro­
priate and easier to use. See also Chapter 4 in the Tech­
nical Manual.

To create a new text file, type

OPEN
DPRINT
CLOSE

" (name of file)
[what you want to type into the file]

" (name of file)

Example:

OPEN "SESAME
DPRINT [THIS IS A TEST]
CLOSE "SESAME

The text is stored with the CLOSE procedure. To see
the file listed on the disk, type CATALOG. To see the
contents of the file, use the procedure SHOWTEXT in
TEXTEDIT. Example:

SHOWTEXT

THIS IS A TEST

To add to a file, use OPEN.FOR.APPEND instead of
OPEN. Example:

OPEN.FOR.APPEND "SESAME
DPRINT [TESTING APPENDING]
CLOSE "SESAME

SHOWTEXT

THIS IS A TEST
TESTING APPENDING

Terrapin Logo Tutorial A-25

Appendix: Utilities Disk

A-26

WARNING: If you use OPEN with an existing file, the
newly entered text will overwrite the text already in
the file. Example:

OPEN "SESAME
DPRINT [HI]
CLOSE "SESAME

SHOWTEXT

HI
/SA TEST

TESTING APPENDING

TEXTEDIT:

(assuming text above in it)

How to Save, Read, Examine, and Print
Text Files

Using Logo as a text editor:

To start a text file, type

TO< RETURN>

This puts you into the editor, with the white line across
the bottom of the screen.

Type the text you want, making use of the editing com­
mands described in the Edit section of the APPENDIX.

NOTE THE DIFFERENCE HERE: When you have
finished and are ready to print or save the text, leave
the editor by typing

< CTRL> G

Terrapin Logo Tutorial

Appendix: Utilities Disk

Do NOT type the < CTRL> C used to define proce­
dures.

Use SAVETEXT (described below) immediately to
save the file on the disk. You can always replace it with
a corrected version, but if you accidentally erase it
from your workspace before you save it, you must
retype the whole thing.

Read the file back from the disk using READTEXT
(also described below).

WARNING: To work on the file again after using
READTEXT, type EDIT (or ED). If you type TO when
there is text in the editor, it will be erased. If you have
not yet saved it, it will be lost completely. However,
if it is on the disk, it only means reading it in again.

Type

EDIT

to work on the file again. (See warning above.)

See also Chapter 7 in the Technical Manual.

READTEXT :FILE Reads a Logo text file into the editor.

Terrapin Logo Tutorial

In this example, "SESAME has the
two lines in it. Example:

READTEXT "SESAME
SHOWTEXT

THIS IS A TEST
TESTING APPENDING

A- 27

Appendix: Utilities Disk

A-28

SA VETEXT :FILE Saves the contents of the editor to
the disk in the file named. To store
the lines above in a different file
(GEORGE), type

SAVETEXT "GEORGE

SHOWFILE :FILE Reads the file named and prints it
out on the screen. SHOWFILE is a
combination of READTEXT and
SHOWTEXT. Example:

SHOWFILE "GEORGE

PRINTFILE :FILE Reads and prints the file in the editor
on the printer. Uses SHOWFILE.

SHOWTEXT

If your printer is not controlled
from Slot 1, change the value of
:PRINTER. Example: if your printer
card is in Slot 7, type

MAKE "PRINTER 7

To print the contents of the file
SESAME on the printer, type

PRINTFILE "SESAME

Prints on the screen the text which
is in the editor. See examples above.
Uses PRINT.MEM.

Terrapin Logo Tutorial

PRINTTEXT

Appendix: Utilities Disk

Prints on the printer the text which
is in the editor. Uses SHOWTEXT.
Example: to print the contents of the
editor, type

PRINTTEXT

PRINT.MEM :FROM :END
The procedure used by SHOWTEXT.

FID: File Management Utility:
How to Delete, Rename, Lock, and Unlock
Files, Set Default File Extension

Type

FID

Then use the character indicated by FID to list, delete,
rename, lock, or unlock files on the disk, or to set the
default file extension. See Chapter 4 of the Technical
Manual.

SCREENDUMP:
Printing the Logo Graphics Screen

The procedure SCREENDUMP in this file can be used
with a Grappler card to print Logo screen pictures. To
use it, read in the file, draw (or read in) the desired pic­
ture , and type SCREENDUMP. (Remember that read­
ing in a file erases the screen, so SCREENDUMP
should not be read in after the picture is drawn.)

Terrapin Logo Tutorial A-29

Appendix: Utilities Disk

A-30

SHAPE.EDIT: How to Change the Shape of
the Turtle

See Chapter 5 of the Technical Manual.

ANIMAL: The Game that Teaches the Com­
puter About Animals

ANIMAL is a game in which the computer tries to
guess the animal you are thinking of by asking you
questions. If it doesn't guess correctly, it will ask you
for your animal's name and a question to distinguish
that animal from the animal it guessed. This informa­
tion it adds to its knowledge tree for the next game.

To play ANIMAL, type

READ "ANIMAL then

Type ANIMAL

The ANIMAL game is a good example of brief, single
purpose procedures:

ANIMAL Prints the greeting, then uses GUESS with
the stored :KNOWLEDGE. After a round of
the game, prints another greeting, uses WAIT
for a pause, then begins again by calling
itself, ANIMAL.

Terrapin Logo Tutorial

Appendix: Utilities Disk

ANIMAL.INSPECTOR:
Whats in the ANIMAL Knowledge Base?

This file is intended as a learning aid to be used in the
discussion of the ANIMAL game.

The global variable :KNOWLEDGE in the file ANIMAL
is the knowledge base examined. Therefore, it is neces­
sary to read in the file ANIMAL to use the
ANIMAL.INSPECTOR.

To examine the knowledge base available to ANIMAL,
type

INSPECT.KNOWLEDGE

INSPECT.KNOWLEDGE uses INSPECT1 with the
stored :KNOWLEDGE, begin­
ning at level 0.

INSPECT1 :KNOWLEDGE :LEVEL

IPRINT

Terrapin Logo Tutorial

calls itself and IPRINT to
inspect and print each branch
of the knowledge tree.

Does a pretty print of the
ANIMAL tree of knowledge.
Type <CTRL> W (hold down
the <CTRL> key and press
<W>) to stop the scrolling
(to read the tree). Press any
key to resume scrolling.

A-31

Appendix: Utilities Disk

A- 32

DYNATRACK:
A Game: the Dynamic Turtle
On a Frictionless Surface

Steering without friction is a very different world, as
people riding on rocket power have discovered. Dyna­
track puts you on a rocket sled on a frictionless track
and gives you the power to do two things:

1. You can turn the sled, BUT it will keep moving in
the old direction, moving sideways.

2. You can give it a burst of rocket power. The force
will be applied in the direction in which it is point­
ing, BUT, since it was already moving, the resultant
direction will be somewhere between the original
dirction and the direction in which you are pointing.

This is one of the trickiest games you will meet. It re­
quires strategy more than eye-hand co-ordination.

Type READ "DYNATRACK and then

Type DYNATRACK

and follow directions to play.

The dynamic turtle keeps moving when you give it a
"kick." Type R to turn it right, L to turn it left, K to kick
it in the direction it is facing.

If it is moving in another direction when you "kick" it,
the direction of movement will be changed, but it will
take more than one one kick to change to the direction
in which it is pointing.

Terrapin Logo Tutorial

Appendix: Utilities Disk

INSPI.PICT: Sample Logo Picture

To see the picture, type

READPICT "INSPI

The procedure which drew it is listed in Chapter 4 of
the Technical Manual.

ROCKET, ROCKET.AUX, ROCKET.SHAPES:
Example of User-Defined Turtle Shape

After the file ROCKET is read, type

ROCKET

The moving rocket is the turtle, defined using
SHAPE.EDIT as described in Chapter 5 of the Technical
Manual.

After you run the procedure, type

SETSHAPE :ROCKET
DRAW

and try moving the rocket-turtle around. (See the
Graphics chapter.) Type

SIZE 5

and graphics commands. The rocket will move, no
matter how large it is (SIZE 1 is the normal size). How­
ever, figures other than the turtle figure will make only
90 degree turns, although the trail each leaves behind
will go in the designated direction.

Terrapin Logo Tutorial A-33

Appendix: Utilities Disk

TET:
A Graphics Procedure of
Variable Complexity

TET is a good example of a recursive procedure. It
draws tetrahedra on the points of tetrahedra. The larg­
est tetrahedron is of the size specified. On its points
are drawn half-size tetrahedra, on their points are
drawn quarter-size tetrahedra, and so on, to the depth
specified. A depth of 1 draws only the one large tetrahe­
dron. Try

TET 50 3

Spaces in the procedure listing below are to help iso­
late the individual commands. They are not a neces­
sary (or usual) inclusion. The REPEAT statement must
be typed as one line (without a <RETURN> in it).

TO TET :SIZE :DEPTH
IF :DEPTH = 0 STOP

Type as one line TET :SIZE* .5 :DEPTH-1 t
REPEAT 3 [LEG :SIZE

RT 150 FD :SIZE

A-34

RT 150 LEG :SIZE RT 180)
END

TO LEG :SIZE
FD :SIZE / I 2 * COS 30)

END

Terrapin Logo Tutorial

Appendix: Utilities Disk

ADDRESSES, AMODES,
ASSEMBLER, OPCODES:
Interfacing Logo and the Assembler

Chapter 6 in the Technical Manual describes the use of
these files in Logo/ Assembler interfacing.

SWEET-P: Plotter Procedures

The procedures in this file make it easy to create Logo
graphics on the Sweet-P Personal Plotter from Enter
Computer.

To start, read in the file and type

SETUP

The names of most procedures resemble their Logo
screen graphics equivalents; for example, PFD moves
the plotter pen forward, PPU does a plotter PENUP,
and so on. For a listing of commands, type

HELP

The procedure POLYSPI is given as an example of a
plotter superprocedure. Its only difference from pro­
cedures you've already seen is that it uses PFD and
PRT instead of FD and RT.

The Sweet-P has the added advantage of being able to
print text as well as graphics. The following proce­
dures make it easy to vary the size and direction of text
printing.

Terrapin Logo Tutorial A-35

Appendix: Utilities Disk

A-36

PRINTTEXT Takes an input and prints it on the
plotter. The input may be either a
word or a list.

TEXT SIZE Controls the magnification of text
size. The input range is 1 to 255, al­
though values much larger than 90
will create characters too big for a
regular sheet of paper. Default value
is 1.

TEXTORIENT Sets the direction for text printing.
The possible inputs are 0, 90, 180,
and 270. Default is 0.

The procedure CHANGEPEN is provided so you can
tell a procedure to pause for manual pencolor change.

You can also vary the magnification of graphics fig­
ures. To do so, change the global variable EXPAN­
SION. A value of 7 .6 will give the plotter page the same
turtle-step dimensions as the graphics screen. (This
means that the default value, 3, allows more turtle
steps in all directions than is possible on the monitor.)

Terrapin Logo Tutorial

Appendix: Utilities Disk

RSPLOTTER: Procedures for the Radio
Shack Plotter

The procedures in this file allow you to control the
Radio Shack four-color plotter (model CGP-115) from
Logo. As with the SWEET-P procedures, most proce­
dure names resemble their Logo screen graphics
equivalents.

A few differences should be noted, however. You do
not have to change pens manually on the Radio Shack
plotter. Instead, the procedure PPC is provided.

In addition, the procedure NEWPAGE allows you to
feed clean paper from the roll into the plotter.

Finally, the Radio Shack plotter can also print text as
well as graphics, but must first be put into text or
graphics mode. The procedures TXTMODE and
GRMODE permit you to switch back and forth with
ease.

Terrapin Logo Tutorial A-37

Appendix: Editing

A-38

EDITMODE

USE OF CONTROL CHARACTERS
FOR EASE IN EDITING

The EDIT mode discussion in Chapter 2 of the Techni­
cal Manual includes a listing of the keyboard editing
commands.

The <CTRL> key is used like the <SHIFT> key. Hold
it down while you type the character indicated.
(<CTRL> N: hold down <CTRL> and type <N> .)

Moving the Cursor

These commands move the cursor without changing
the text.

Arrow Keys The Left Arrow moves the cursor to the
left, and, if it is at the beginning of a line,
up to the end of the previous line.

The Right Arrow moves the cursor to the
right, and, if it is at the end of a line,
down to the beginning of the next line.

<CTRL> N NEXT: Moves the cursor down to the
next line.

<CTRL> P PREVIOUS: Moves the cursor up to the
previous line.

Note that the up and down arrow keys on the Apple lie
can be used instead of <CTRL> P and <CTRL> N.

< CTRL> A Moves the cursor to the beginning of the
line.

Terrapin Logo Tutorial

Appendix: Editing

<CTRL> E END: Moves the cursor to the end of the
line.

<CTRL> F FORWARD: When editing more than
one screenful of text, moves the cursor
one screenful forward, or to the end of
the buffer, whichever comes first.

<CTRL> B BACK: When editing more than one
screenful of text, moves the cursor one
screenful back, or to the beginning of the
buffer, whichever comes first.

<RETURN > typed at the end of a line: moves the
cursor to the next line.

Moving the Text

These commands move the text without changing it or
changing the position of the cursor in the text.

< RETURN> typed in the middle of a line: moves the
cursor and the text after it on the line to
the next line.

< CTRL> 0 OPEN: Opens a new line at the cursor
position. The cursor remains on the open
line. Equivalent to typing < RETURN>
< CTRL> P. Use it to add new lines in
the middle of a procedure .

< CTRL> L Scrolls the text so that the line with the
cursor is in the middle of the screen.
Useful for seeing a particular sequence
completely on the screen.

Terrapin Logo Tutorial A- 39

Appendix: Editing

A-40

Deleting Text

These commands delete text. Deleted text is not recov­
erable. When text is deleted within a line, the rest of
the line moves to the left.

 Each stroke of the (<ESC>) key
deletes the ch:rracter to the left of the
cursor. used at the beginning of
the line deletes the <RETURN> from
the previous line, and joins the two lines.

<CTRL> D DELETE: Deletes the character under ·the
cursor. When used at the end of a line
<CTRL> D deletes the <RETURN>.

<CTRL> X Deletes from the cursor to the end of the
line. If the cursor is at the beginning of
the line, <CTRL>X kills the whole line.

Restoring Text

<CTRL> Y YANK: Recalls the most recently de­
leted line. This feature is especially use­
ful when you want to move a line to a
different location in the procedure.
Also, if you are writing a procedure
with several similar lines, try this trick:
type the first line, delete it, and then re­
store it several times. Then you can
make the minor changes necessary in
each line.

Terrapin Logo Tutorial

Appendix: Editing

Leaving EDIT Mode

<CTRL> C COMPLETE: Exits EDIT mode with
changes intact. Use it when you complete
a procedure or changes to a procedure.

<CTRL> G GONE: Exits EDIT mode without making
any changes to your procedure. Use it
when you change your mind about mak­
ing changes or have just done a lot of
typing without realizing you were still
in EDIT mode.

Terrapin Logo Tutorial

When using Logo as a text editor,
<CTRL > G is the only way to exit from
the editor.

A-41

Appendix: Procedures

Procedures

GRAPHICS CHAPTER

Turtle Driving Projects

1. through 4. Screen size:

Hint: type < CTRL> F to see when the whole turtle
goes off the edge and appears at the other edge of the
screen. Type < CTRL> T to see the whole list of num­
bers (distances). Add up the numbers (or tell Logo to:
100 + 50 + ...), type DRAW and type FD (the total
number) to check it out.You could also say FD 100 +
50 + ... , but you would not know what it totalled .

3. and 4. Diagonals:

To get to the first corner: use half the distance across
(from 2) to get to the edge, and half the distance down
to get to the bottom. Write down this list of instructions
in case you do not get the true diagonal on the first try.
Then aim the turtle at the opposite corner.

5. Command with a negative number and the equiva­
lent:

Try FD -20 and BK 20

6. Square examples (Type <RETURN> only where
indicated):

1) FD 100 RT 90 < RETURN>
Type asonelin e < CTRL> p < SPACE> < CTRL> p

< SPACE> < CTRL> P < RETURN>

A-42 Terrapin Logo Tutorial

Appendix: Procedures

2) FD 100
FD 100
FD 100
FD 100

RT 90 < RETURN>
RT 90 < RETURN>
RT 90 < RETURN>
RT 90 < RETURN>

3) FD 100 RT 90 < RETURN>
< CTRL> P < RETURN>
< CTRL> P < RETURN>
< CTRL> P < RETURN>

4) FD 100 RT 90 FD 100 RT 90 FD 100
RT 90 FD 100 RT 90 < RETURN>

D
Square

Rectangle examples:

1) FD 100 RT 90 FD 50 RT 90 < RETURN>
< CTRL> P < RETURN>

(Why does it take only one repetition for the rectangle
. but three for the square?)

2) FD 100 RT 90 < RETURN>
FD 50 RT 90 < RETURN>
FD 100 RT 90 < RETURN>
FD 50 RT 90 < RETURN>

Terrapin Logo Tutorial A-43

Appendix: Procedures

Type as one line, with only the one <RETURN>:

3) FD 100 RT 90 FD 50 RT 90 FD 100
RT 90 FD 50 RT 90 <RETURN>

D
Rectangle

These instructions leave the turtle in its starting posi­
tion, which is a very good idea. Keep it in mind when
you write procedures. It makes it easier to plan how
one procedure follows another when you want to use
several, as in drawing something that requires both a
square and a triangle.

7. Some straight line initials (<RETURN> is assumed
after each line):

L: LT 90 FD 50 RT 90 FD 100
I: FD 100
V: LT 15 FD 100 BK 100 RT 30 FD 100
T: FD 100 LT 90 FD 25 BK 50
Y: FD 50 LT 30 FD 50 BK 50 RT 60 FD 50

A-44 Terrapin Logo Tutorial

Appendix: Procedures

y
Initial Y

These instructions leave the turtle at the end of the
initial. Later the tutorial will tell you how to move the
turtle without leaving a track. (See section which in­
cludes PENUP and PENDOWN.)

Procedure Projects

1. Trackless SETUP:

TO SETUP
DRAW
PU
LT 90
FD 140
RT 90
BK 110
PD
FULLSCREEN

END

Terrapin Logo Tutorial A-45

Appendix: Procedures

A-46

gives the same final result as

TO SETUP
DRAW
LT 90
FD 140
RT 90
BK 110
cs
FULLSCREEN

END

Use PU / PD to avoid having to get rid of the track.

2. Design with MOVE repeated:

TO MOVE
FD 100
RT 15
BK 80
RT 25

END

TO MOVEIT
REPEAT 24 [MOVE]

END

3. A four-sided figure:

TO FOURSIDE
REPEAT 2 [FD 60 RT 30 FD 60 RT 150]

END

FOURSIDE RECTl

Terrapin Logo Tutorial

4. Rectangles:

TO RECT
REPEAT 2 [FD 100 RT 90 FD 50 RT 90]

END

TO RECTl
REPEAT 2 [FD 110 RT 90 FD 10 RT 90]

END

5. Setup and a rectangle:

SETUP
RECT

SETUP
RECTl

6. REPEAT, a shape, and a turn:

TO HOTPAD
REPEAT 12 [FOURSIDE RT 30]

END

TO WINDMILL
REPEAT 4 [RECTl RT 90]

END

I

Appendix: Procedures

I

HOTPAD WINDMILL

Terrapin Logo Tutorial A-47

Appendix: Procedures

A-48

Projects Using Shapes

1. A square in each corner of the screen:

TO CORNER.SO
SETUP
SQUARE
PU
FD 200
PD
SQUARE
PU
RT 90
FD 220
LT 90
PD
SQUARE
PU
BK 200
PD
SQUARE

END

TO FOUR.SO
SETUP

TO SETUP
PU
LT 90
FD 140
RT 90
BK 110
PD

END

TO SQUARE
REPEAT 4 [FD 30 RT 90]

END

REPEAT 4 (SQUARE PU FD 230 RT 90 PD]
END

D

D D
CORNER.SQ

Terrapin Logo Tutorial

Appendix: Procedures

Note how in the first version, the turtle walks around
the screen getting to the location of the closest corner,
while in the second version it starts each square from
the corner. It is always more elegant and more under­
standable if you can figure out a pattern and repeat it.

2. Keeping that in mind, let's see what would draw a
square and place the turtle in position to draw another
in a row.

SQUARE RT 90 FD 30 LT 90 would do it,

TO ROW.SQUARE
REPEAT 3 [SQUARE RT 90 FD 30 LT 90]

END

and, if the turtle turned LT 90 first, so would

SQUARE FD 30

TO ROW.SQUARE.LEFT
LT 90
REPEAT 3 [SQUARE FD 30]

END

Lengthening the distance forward would produce a
row of separated squares.

ll

ROW.SQ

Terrapin Logo Tutorial A-49

Appendix: Procedures

A-50

3. Tower of squares:

TO SQUARE.TOWER
LT 90
ROW.SQUARE

END

SQUARE .TOWER

4. A leaning tower:

TO LEANING.TOWER
BASE
SQUARE.TOWER

END

TO SQUARE.TOWER.LEFT
RT 90
ROW.SQUARE.LEFT

END

TO BASE
RT 90
FD 30
LT 105
FD 10

END

Terrapin Logo Tutorial

Appendix: Procedures

Discover the distances in a procedure like BASE by
trying different ones.

LEANING.TOWER

5. A window with four panes:

TO WINDOW
REPEAT 4 [SQUARE LT 90]

END

EE

WINDOW

Terrapin Logo Tutorial A-51

Appendix: Procedures

A-52

6. Square

1) TO SQ2
FD 30
RT 90
FD 30
RT 90
FD 30
RT 90
FD 30
RT 90

END

2) TO SQ3
REPEAT 4 [FD 30 LT 90]

END

7. Analyzing the problem of drawing a triangle:

Decisions (as described in the text):

1. Sides will be 30 steps.
2. Have to try a few different numbers for the turn
3. Want 3 sides

TO TRI
REPEAT 3 [FD 30RT 120]

END

8. 1-4 using triangles:

(1) A triangle in each corner of the screen: Substitute
the triangle procedure for the square procedure (and
change the name):

Terrapin Logo Tutorial

Appendix: Procedures

TO FOUR.TRI
SETUP
REPEAT 4 [TRI PU FD 230 RT 90 PD]

END

TO CORNER.TRI
SETUP
TRI
PU
FD 200
PD
TRI
PU
RT 90
FD 220
LT 90
PD
TRI
PU
BK 200
PD
TRI

END

C>
FOUR.TRI

[>

[>
CORNER.TRI

Notice that the two procedures produce different
results with triangles. The orientation of a triangle
makes a difference.

Terrapin Logo Tutorial A-53

Appendix: Procedures

A-54

(2) A row of triangles:
Turn LT 90 (or RT 30) first to lay the triangle down to
make it easier to connect the triangles.

TO ROW.TRI
LT 90
REPEAT 3 [TRI FD 30]

END

TO ROW.TRI.RIGHT
RT 30
REPEAT 4 [TRI RT 60 FD 30 LT 60]

END

ROW .TRI

In the first, the turtle is heading in the direction of the
first side when it starts out. In the second, it has to turn
each time to head in the right direction. Which is easier
to understand? Try to make your procedures as simple
as possible.

(3) A tower of triangles:
There are several choices:
1) Turning the row of triangles will produce a tower

of triangles balancing on their points.
2) Drawing another row, fitted into the first, will

produce a tower with triangles pointing in oppo­
site directions, either balanced on a point,

Terrapin Logo Tutorial

Appendix: Procedures

3) or with a base.
4) Drawing triangles with each base balanced

on the point of the one below requires a new
procedure.

TO TRI.TOWERl
RT 90
ROW.TRI

END

TRI.TOWERl

TO TRI.TOWER2
RT 90
ROW.TRI
RT 60
FD 30
RT 120
RT 90
ROW.TRI

END

TRI.TOWER2

TO TRI.TOWER3: Add to 2) (before END)
FD 15
RT 90
FD 30

FD 30 is slightly too long. Adjust it by trial.

TO TRI.TOWER4
LT 90
REPEAT 3 [TRI RT 60 FD 30 LT 60 BK 15]
TRI

END

Terrapin Logo Tutorial A-55

Appendix: Procedures

A-56

TR1.TOWER3 TRI.TOWER4

(The REPEAT statement must be typed as one line,
with only one <RETURN>, at the end.) Note that the
turtle draws the triangle, turns and moves to the top,
then turns again and backs into position to draw the
next one.

(4) A leaning tower of triangles:
Turn turtle and draw either ROW.TRI,
TRI.TOWER or TRI.TOWER2.

9. Designs using FOURSIDE:

NOTE: These designs were named after they were
drawn.

1) TO PROPELLER
REPEAT 2 [FOURSIDE RT 180)

END

2) TO BOW.TIE
LT 105
REPEAT 2 [FOURSIDE RT 180)

END

3) TO TRI.PROP
REPEAT 3 [FOURSIDE RT 120)

END

Terrapin Logo Tutorial

4) TO PINWHEEL
REPEAT 4 [FOURSIDE RT 90]

END

Appendix: Procedures

BOW.TIE PINWHEEL

5) TO FIVE
REPEAT 5 [FOURSIDE RT 72]

END

6) TO SUPER.PINWHEEL
REPEAT 6 [FOURSIDE RT 60]

END

7) TO BIRD
PINWHEEL
SUPER.PINWHEEL

END

SUPER.PINWHEEL

Terrapin Logo Tutorial

BIRD

A-57

Appendix: Procedures

8) TO FLEUR
REPEAT 9 [FOURSIDE RT 40]

END

9) TO HOTPAD
REPEAT 12 [FOURSIDE RT 30]

END

10) TO FLOWER
REPEAT 18 [FOURSIDE RT 20]

END

FLEUR FLOWER

A-58

11) TO MUM
HT
REPEAT 36 [FOURSIDE RT 10]

END

12) TO SUN
HT
REPEAT 72 [FOURSIDE RT 5]

END

Terrapin Logo Tutorial

Appendix: Procedures

MUM

SUN SUN

Except for BIRD, these are all essentially the same
procedure, with a different turn. But see what different
designs they are! HT (HIDETURTLE) makes the draw­
ing go faster.

Terrapin Logo Tutorial A-59

Appendix : Procedures

A-60

Progressively more complicated designs:

Using ROW.SQ:

1) TO NINE
HT
REPEAT 4 [ROW.SQ LT 90]

END

2) TO LACE
HT
REPEAT 12 [NINE RT 30]

END

NINE LACE

Using TRI.TOWER:

1) TO JAG.TRI
LT 90
REPEAT 3 [TRI.TOWERl

END

2) TO JAG3
REPEAT 3 [JAG.TRI LT 30]

END

LT 120]

Terrapin Logo Tutorial

Appendix: Procedures

JAG.TRI JAG3

10. A window with 6 triangular panes:

TO TRI.WINDOW
ROW.TRI
RT 120
FD 90
REPEAT 2 [RT 120 FD 60]

END

TRI.WINDOW

Terrapin Logo Tutorial

TO TRI.WINDOW2
REPEAT 6 [TRI RT 60]

END

TR1.WIND0W2

A-61

Appendix: Procedures

A-62

11. Some triangle procedures:

TO TRl2 TO TRI
FD 30
RT 120
FD 30
RT 120
FD 30
RT 120

REPEAT 3 [FD 30 LT 240]
END

END

Projects: More Shapes

1.-3. Using REPEATand division:

1) A square

TO SOl
REPEAT 4 [FD 30

END

2) A triangle

TO TRl3
REPEAT 3 [FD 30

END

RT 360/4]

RT 360/3]

3) A pentagon (5 sides)

TO PENTA
REPEAT 5 [FD 30

END
RT 360/5]

4) A hexagon (6 sides)

TO HEXA
REPEAT 6 [FD 30

END

' \

RT 360/6]

Terrapin Logo Tutorial

5) A septagon (7 sides)

TO SEPTA
REPEAT 7 (FD 30

END
RT 360/7]

t>oOO()

Polygons

6) A pentadecagon (15 sides)

TO FIFTEEN
REPEAT 15 [FD 30

END
RT 360/15]

Projects: Sizable Shapes

Appendix: Procedures

1. SQUARE4 to draw squares of various sizes:

TO SQUARE4
SQV 10
SQV 20
SQV 30
SQV 40

END

TO SQV :LENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

Terrapin Logo Tutorial A-63

Appendix : Procedures

A-64

SQUARE4

2. Another set of squares beside the first:

TO TWO.SQUARES
SQUARE4
LT 90
SQUARE4

END

TWO SQUARES

3. A procedure using a specific size square:

TO WINDOWl
REPEAT 4 [SQV 30 RT 90)

END

Terrapin Logo Tutorial

Appendix: Procedures

WIND0Wl

4. 4 squares, each 25 bigger than the last, with size of
the first square input:

TO BIGGER.SQ :LENGTH
SQV :LENGTH
SQV : LENGTH + 25
SQV :LENGTH + 50
SQV :LENGTH + 75

END

BIGGER.SQ

Projects with Regular Polygons

1. POLY 4 100 and POLY 100 4:

TO POLY :LEN :TURNS
REPEAT :TURNS [FD :LEN RT 360/:TURNS]

END

Terrapin Logo Tutorial A-65

Appendix: Procedures

POLY 4100 and POLY 100 4

2. POLY with the same :LEN and varying :TURNS:

POLY: Same :LEN, varying :TURNS

3. POLY with the same :TURNS and varying :LEN:

POLY: Same :TURNS, varying :LEN

A-66 Terrapin Logo Tutorial .

Appendix: Procedures

4. POLY twice, with different :TURNS:

Using POLY Twice with Different :TURNS

5. Using POLY to make a triangle:

POLY 100 3

POLY Triangles

6. The largest number you can use for :TURNS:

There is no largest number ... The figure becomes a
rough circle at 15, and after that, larger numbers in­
crease the exactness of the curve, but after a while
there is no more visible improvement and the only
effect is to make the turtle go more slowly and the
circle to get larger (with the same length of side). Moni­
tors do not have a high enough resolution to distin­
guish between a many-sided figure and a circle. The
only reason you might want to be that exact (and slow)

Terrapin Logo Tutorial A-67

Appendix: Procedures

A-68

would be for printing the designs on paper. The de­
signs shown in the tutorial were drawn with the turn
indicated in the procedures with them. The mascots
(rabbit, elephant, and snail) were drawn with slower
arc procedures for better resolution.

Projects: Curves

1. Circles: 2nd with step twice as big,
3rd with turn twice as big.

DRAW
REPEAT 360 [FD 1 RT 1]
REPEAT 360 [FD 2 RT 1]
REPEAT 180 [FD 1 RT 2]

Circles

2. Circles to right and left:

DRAW
REPEAT 360 [FD 1
REPEAT 360 [FD 1

RT 1]
LT 1]

Terrapin Logo Tutorial

Appendix: Procedures

Circles Left and Right

3. To figure out the diameter (distance across) of a cir­
cle, turn the turtle 90 and walk it across. You can see
the line better if you type HT (HIDETURTLE).

4. Quarter-circle arc to the right (make it into a proce­
dure and call it ARCR90):

REPEAT 360/4 [FD 1 RT 1]

5. Quarter-circle arc with steps twice as big:

REPEAT 360/4 [FD 2 RT 1]

6. Sixth-of-a-circle arc to the left and right (make them
into procedures and call them ARCR60 and
ARCL60):

REPEAT 360/6 [FD 1
REPEAT 360/6 [FD 1

Terrapin Logo Tutorial

LT 1]
RT 1]

A-69

Appendix: Prqcedures

ARCR90

ARCL60

A-70

7. A procedure which uses an arc procedure and
straight lines:

TO VASE
PU
RT 90
FD 60
LT 90
BK 30
PD
HT
ARCL60
ARCR60
FD 30
LT 90
FD 20
LT 90
FD 30
ARCR60
ARCL60
ARCL90
FD 20
ARCL90

END

VASE

Terrapin Log·o Tutorial

Appendix: Procedures

Projects: Simple Recursion

1. A recursive procedure that draws a little figure, then
calls itself:

TO FIGURE
FD 60 RT 49 FD 10 RT 80 FD 5 RT 90
FIGURE

END

•
FIGURE

2. A recursive procedure that uses arcs and lines:

TO FAN
PU
RT 20
PD
REPEAT 3 [ARCR 50 60 ARCL 50 90 BK 50 LT 90]
FAN

END

FAN FAN

Terrapin Logo Tutorial A-71

Appendix: Procedures

3. A recursive procedure using a triangle:

A-72

TO MILLWHEEL
TRI
ARCL60
MILLWHEEL

END

MILLWHEEL

4. Stars:

TO STAR
FD 75 RT 144
STAR

END

STAR

TO STAR9
FD 75 RT 160
STAR9

END

STAR9

Terrapin Logo Tutorial

Appendix: Procedures

Projects: Changing Inputs

1. SQUARE with a larger increment:

TO SQUAREl :LENGTH
FD :LENGTH RT 90
SQUAREl :LENGTH + 15

END

TO SQUARE2 :LENGTH
FD :LENGTH RT 90
SQUARE2 :LENGTH + 25

END

I>

LJ l

SQUAREl With + 15 SQUARE2 With + 25

SQUARE with a smaller increment:

TO SQUARE3 :LENGTH
FD :LENGTH RT 90
SQUARE3 :LENGTH + 1

END

TO SQUARE4 :LENGTH
FD :LENGTH RT 90
SQUARE4 :LENGTH + 3

END

Terrapin Logo Tutorial

V

A-73

Appendix: Procedures

A-74

SQUARE with an increment subtracted:

TO SQUARE5 :LENGTH
FD :LENGTH RT 90
SQUARE5 :LENGTH -5

END

TO SQUARE6 :LENGTH
FD :LENGTH RT 90
SQUARE6 :LENGTH -10

END

•
SQUARES With - 5 SQUARE6 With - 10

Note what happens when the length of the side be­
comes very small and then negative ...

3. SQUARE with a slightly different turn:

TO SQUARE7 :LENGTH
FD :LENGTH RT 93
SQUARE7 :LENGTH + 5

END

TO SQUARES :LENGTH
FD :LENGTH RT 87
SQUARES :LENGTH + 5

END

Terrapin Logo Tutorial

Appendix: Procedures

SQUARE7 With RT 93 SQUARES With RT 87

Now you begin to see some of the power of changing
the input in a recursive procedure.

4. SQUARE with the input changed by multiplication:

TO SOUARE9 :LENGTH
FD : LENGTH RT 93
SOUARE9 :LENGTH * 1.1

END

TO SOUARE10 :LENGTH
FD :LENGTH RT 87
SOUARE10 :LENGTH * 2

END

SQUARE9 With * 1.1 SQUARE10 With* 2

5. SQUARE, SQUARE1, ... SQUARE10 in both WRAP
and NOWRAP mode.

Terrapin Logo Tutorial A-75

Appendix: Procedures

A-76

6. All the SQUAREs in WRAP and PC 6 (PENCOLOR
6): The designs will continually change. Sample pic­
ture here catches only one moment in the succession
of changes.

A Squaral in Wrap Mode

7. Using a SQUARE procedure with variable input
(such as SQV) in a procedure that draws successively
larger squares.

TO LARGER.SQUARES :LENGTH
SQV :LENGTH
LARGER.SQUARES :LENGTH + 10

END

TO SQV : LENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

•
LARGER.SQUARES

Terrapin Logo Tutorial

Appendix: Procedures

If you wanted to center your squares, instead of draw­
ing them with two common sides, you would move
the turtle between squares:

TO LARGER.SQUARES :LENGTH
SQV :LENGTH
PU LT 90 FD 5 RT 90 BK 5 PD
LARGER.SQUARES :LENGTH + 10

END

•
LARGER.SQUARES [Centered)

Note that the turtle turns left, moves the distance of
half the increment, turns right and backs into position,
moving the distance of half the increment again. The
backing up saves an extra turn.

Projects: Testing and Stopping

1. Replacing the 45 in RT 45:

TO DESIGN :TIMES :LENGTH
IF :TIMES < 1 STOP
SQV :LENGTH
RT :TIMES* 4
DESIGN :TIMES-1:LENGTH

END

Terrapin Logo Tutorial A-77

Appendix: Procedures

A-78

DESIGN

2. A tower of increasingly smaller squares, number of
squares chosen when procedure is run, with a setup
procedure to start lower on the screen (Type
SET.TOWER, then type TOWER.OF.SQUARES 5 55):

TO TOWER.OF.SQUARES :NUM :LEN
IF :NUM = 0 THEN STOP
SQV :LEN
FD :LEN RT 90 FD 5 LT 90
TOWER.OF.SQUARES :NUM-1 :LEN-10

END

TO SET.TOWER
PU BK 100 PD

END

TOWER.OF.SQUARES

Terrapin Logo Tutorial

Appendix: Procedures

After drawing each square, the turtle moves up the
side of the square just drawn, turns, moves half the
size of the increment (so the next square is centered),
and turns again, ready to begin the next square.

3. DESIGN with a variable turn:

TO DESIGNl :LENGTH :TIMES :TURN
IF :LENGTH < 0 THEN STOP
IF :TIMES< 1 THEN STOP
SQUARE :LENGTH RT :TURN
DESIGNl :LENGTH :TIMES -1 :TURN

END

DESIGNl

Recursion Projects

1. Successively smaller houses:

Begin by designing one house with a variable for a
unit of size, to be determined later. The parts will re­
quire some instructions between them for positioning,
but that too can wait. For a start, just describe what
will be in the picture.

Terrapin Logo Tutorial A-79

Appendix: Procedures

A-80

TO HOUSE :SIZE
FRONT :SIZE
ROOF :SIZE

END

HOUSE

TO FRONT :SIZE
WALLS :SIZE
DOOR :SIZE
WINDOW :SIZE

END

FRONT

Now is the time to decide the size relationship of the
components. Test each of these to be sure it works cor­
rectly before you begin on the interfacing instructions
that make the parts go together.

TO WALLS :SIZE
SQUARE :SIZE * 3

END

TO WINDOW :SIZE

TO ROOF :SIZE
TRI :SIZE* 3

END

REPEAT 4 [SQUARE :SIZE/2 RT 90]
END

TO DOOR :SIZE
RECT :SIZE * 2 :SIZE

END

Terrapin Logo Tutorial

Appendix: Procedures

D
WALLS

EE

WINDOW

TO TRI :LENGTH
REPEAT 3 [FD :LENGTH RT 120]

END

TO SQUARE :LENGTH
REPEAT 4 [FD :LENGTH RT 90]

END

TO RECT :LEN :WIDTH

ROOF

DOOR

REPEAT 2 [FD :LEN RT 90 FD :WIDTH RT 90]
END

[>

D

Now comes the fitting together of the parts.

In each case, the turtle finishes in its starting position.
This makes it much easier to figure out how to get to
where the next part is drawn.

Terrapin Logo Tutorial A-81

Appendix: Procedures

A-82

One possible solution:

TO HOUSE :SIZE
FRONT :SIZE
FD :SIZE* 3
RT 30
ROOF :SIZE
LT 30
BK :SIZE* 3

END

TO SETUP
FULLSCREEN
PU
LT 90
FD 135
RT 90
BK 115
PD

END

TO FRONT :SIZE
WALLS :SIZE
RT 90
FD :SIZE/3
LT 90
DOOR :SIZE
PU
RT 90
FD :SIZE* 2
LT 90
FD :SIZE * 1.5
PD
WINDOW :SIZE
PU
BK :SIZE * 1.5
LT 90
FD :SIZE * 2 + :SIZE/3
RT 90
PD

END

SETUP moves the turtle to the lower left corner of the
screen to draw the first house.

Interface Bug in House

Terrapin Logo Tutorial

Appendix: Procedures

The next problem is the procedure which will use
HOUSE to draw a succession of smaller houses and
stop.

TOH :SIZE
IF :SIZE < 2 STOP
HOUSE :SIZE
PU
RT 90
FD :SIZE * 3.4
LT 90
FD :SIZE* 2
PD
H :SIZE* .75

END

The 3.4, 2, and .75 were determined by trial and error,
to see what came out the best on the screen.

Now all that remains is to create the procedure
HOUSES which will run the other procedures when
you type HOUSES.

TO HOUSES
HT
SETUP
H 30

END

To extend this so that you can determine the size re­
duction when you run the procedure, use a variable
instead of the . 7 5:

Terrapin Logo Tutorial A-83

Appendix: Procedures

A-84

TO H :SIZE :FACTOR
IF :SIZE < 2 STOP
HOUSE :SIZE
PU
RT 90
FD :SIZE * 3.4
LT 90
FD :SIZE* 2
PD
H :SIZE* :FACTOR :FACTOR

END

TO HOUSES :FACTOR
HT
SETUP
H 30 :FACTOR

END

HOUSES .75

Now you have the option of making larger and larger
houses, defying perspective, but you will need a test
for maximum size to make the procedure stop.

Terrapin Logo Tutorial

2. A binary tree:

The basic pattern:

TO TREE :LENGTH
RT 45
FD :LENGTH
BK :LENGTH
LT 90
FD :LENGTH
BK :LENGTH
RT 45

END

TREE 20 5

Appendix: Procedures

Note that the turtle finishes in its starting position.

If you want to draw another one of these at each tip,
then you must determine when the turtle is at the tip
and call the procedure again. Each FD :LENGTI-I takes
the turtle to a tip, so it is after each FD that the proce­
dure should be called again.

Terrapin Logo Tutorial A-85

Appendix: Procedures

A-86

One way to stop this procedure so it can recurse and
draw the whole tree, is to specify the number of forks:

TO TREE :LENGTH :FORKS
IF :FORKS = 0 STOP
RT 45
FD :LENGTH
TREE :LENGTH :FORKS -1
BK :LENGTH
LT 90
FD :LENGTH
TREE :LENGTH :FORKS -1
BK :LENGTH
RT 45

END

TREE180

A tree with successively smaller branches could be
told to stop when :LENGTH reached a certain size:

TO TREEl :LENGTH
IF :LENGTH < 5 STOP
RT 45
FD :LENGTH
TREEl :LENGTH / 2
BK :LENGTH
LT 90
FD :LENGTH

Terrapin Logo Tutorial

Appendix: Procedures

TREEl :LENGTH /2
BK :LENGTH
RT 45

END

TO TREE2 :LENGTH
IF :LENGTH < 5 STOP
RT 45
FD :LENGTH
TREE2 :LENGTH * .75
BK :LENGTH
LT 90
FD :LENGTH
TREE2 :LENGTH * .75
BK :LENGTH
RT 45

END

TREE2 40

Each of these makes a different design. To alter it even
more, consider making it with one side different from
the other, perhaps doubling the length of the branches
or changing the turn.

There is a good discussion of binary trees in LOGO
FOR TI-IE APPLE II, by Professor Harold Abelson,
M.I.T.

Terrapin Logo Tutorial A-87

Appendix: Procedures

A-88

3. A fish in a fish in a fish.

First draw one fish, then try it in different sizes to be
sure they will fit together. Then, as in the houses prob­
lem, write the procedure which fits them together.

TO FISH :SIZE
RT 30
PU
RARC :SIZE * 3 10
PD
RARC :SIZE * 3 110
TAIL :SIZE
RARC :SIZE * 3 110

END

TO FISH.IN.FISH :SIZE
IF :SIZE > 40 STOP
FISH :SIZE
PU
RARC :SIZE * 3 10
LT 60
FD :SIZE/3
RT 90
FISH.IN.FISH :SIZE + 10

END

TO FISHES
SETUP.FISH
FISH.IN.FISH 10
EYE

END

TO SETUP.FISH
PU
LT 90
FD 100
RT 90
PD

END

TO EYE
PU
RT 90
FD 40
LT 90
FD 8
LT 90
BK 10
RT 30
FD 5

END

TO TAIL :SIZE
FD :SIZE
BK :SIZE
RT 60
BK :SIZE
FD :SIZE

END

EYE wanders about to put the turtle in an appropriate
place for the eye of the smallest fish.

Terrapin Logo Tutorial

Appendix: Procedures

FISHES

Projects Using Random

1. SQUARE3 using FD RANDOM 100 in SQUARESIDE:

TO SQUARESIDE
FD RANDOM 100
RT 90

END

SQUARE3 with RANDOM 100

TO SQUARE3
SQUARESIDE
SQUARE3

END

2. REPEAT using a random turn between O and 360:

REPEAT 50 [FD 20 RT RANDOM 360]

Terrapin Logo Tutorial A-89

Appendix: Procedures

A-90

3. A recursive procedure using a random turn between
90 and 120:

TO WORM
FD 20
RT 90 + RANDOM 30
WORM

END

WORM

To specify a range BETWEEN two numbers, add the
beginning number of the range (here 90) to the amount
of the range (30, for a range of from 90 to 120). The
computer will always choose a number within the
amount of the range (here 30) and add it to the begin-

. ning number (here 90), to obtain a number within the
specified range (here 90 + 0 to 90 + 30, or 90 -120).

4. Other ranges of turn:

TO WANDER
FD 2
RT RANDOM 10
WANDER

END

TO WIGGLE
FD 5
RT -10 + RANDOM 20
WIGGLE

END

Terrapin Logo Tutorial

TO VARY
FD 10
RT 120 + RANDOM 30
VARY

END

WANDER

VARY

Terrapin Logo Tutorial

Appendix: Procedures

WIGGLE

A-91

Appendix: Procedures

A-92

Mascots: Elephant, Rabbit, Snail

No lions and tigers and bears, but an elephant (that's
for remembrance), a rabbit (denoting speed and
ingenuity), and a snail (go slow ... slow ... slow).

The arcs used are described in the arc development
section. To use the arc procedures on the Utilities Disk,
change ARCR to RARC and ARCL to LARC in each of
the procedures below.

Elephant

TO ELEPHANT :SIZE
HT
ELEPHANT.EAR :SIZE
TRUNK :SIZE
TUSK :SIZE
EYE :SIZE

END

TO TUSK :SIZE
ARCL 10 *:SIZE 70
RT 160
ARCR 10 * :SIZE 50

END

TO ELEPHANT. EAR :SIZE
RT 160
FD 3 *:SIZE
ARCR 7 * :SIZE 180
ARCR 13 * :SIZE 90

END

TO TRUNK :SIZE
ARCR 17 * :SIZE 180
ARCR :SIZE 180
ARCL 10 * :SIZE 100
RT 180

END

Terrapin Logo Tutorial

TO EYE :SIZE
PU
RT 60
ARCL 10 * :SIZE 60
PD
RCIRCLE 2 * :SIZE

END

Evolving the Elephant

For the mascot elephant, :SIZE = 1.

Rabbit

TO RABBIT
HT
HEAD
ARCL 7.5 90
RT 60
BODY

END

Terrapin Logo Tutorial

TO BODY
ARCR 20 60
LCIRCLE 3.5
ARCL 20 60
ARCR 1.5 180
ARCR 20 60
LT 60
ARCR 50 30
ARCL 50 30
ARCR 1.5 180
ARCR 50 30

END

Appendix: Procedures

A-93

Appendix: Procedures

A-94

TO EARS
EAR
RT 150
EAR

END

Evolving the Rabbit

Snail

TO SNAIL
HT
SNAIL.BODY
SNAIL.HEAD
RT 180

TO EAR
ARCR 30 60
RT 120
ARCR 30 60

END

ARCR 5 (270-HEADING)
SNAIL.FOOT

END

TO POLYARC :SIZE :TIMES
IF :TIMES = 0 THEN STOP
ARCR :SIZE 60
POLYARC :SIZE + 1 :TIMES-1

END

TO HEAD
EARS
ARCL 6 540

END

Terrapin Logo Tutorial

TO SNAIL.BODY
POLYARC 1 15
ARCL 10 60

END

TO ANTENNA
ARCR 15 60
ARCR 1 360
PU
RT 180
ARCL 15 60
RT 180
PD

END

Evolving the Snail

Terrapin Logo Tutorial

Appendix: Procedures

TO SNAIL.HEAD
ARCL 5 475
ANTENNA
ARCL 5 20
ANTENNA

END

TO SNAIL.FOOT
ARCR 5 40
LT 100
ARCL 15 90
ARCL 10 60
ARCR 3 120
RT 60
ARCLB 90

END

A-95

Appendix: Procedures

A-96

Procedures for Saving Pictures

The illustrations in the Graphics Procedures section
were drawn (2/3 scale) and stored on the disk with the
following procedures:

TO STORE :PROCEDURE
DRAW
FRAME
H
RUN SENTENCE :PROCEDURE []
TURTLE
SAVEPICT :PROCEDURE

END

TO TURTLE
LT 90 BK 6
REPEAT 3 [FD 12 RT 120]

END

TO FRAME
PU SETXY -90 (-85) SETHEADING O PD
REPEAT 2 [FD 160 RT 90 FD 180 RT 90]

END

Example: type

STORE "TOWN

TOH
PU
HOME
PD

END

STORE clears the screen, draws the frame, moves the
turtle to the HOME position, then runs the procedure
TOWN. The SENTENCE :PROCEDURE [] makes a list
out of the procedure name, so it can be RUN by another
procedure. It turns the command into RUN [TOWN].
(See the chapter on Words and Lists.) The procedure
TURTLE draws a little turtle, since SA VEPICT does
not draw the turtle. SA VEPICT stores the picture on
the disk under the procedure name.

Terrapin Logo Tutorial

Appendix: Procedures

Here is a set of procedures used to generate droves of
wild animals. This also illustrates a use for SETXY.

TO DROVE :ANIMAL
FULLSCREEN
QUAD :ANIMAL (-90)

END

TO QUAD :PROC :Y
IF :Y > 90 STOP
LINE (-125) :Y :PROC
QUAD :PROC :Y + 45

END

TO LINE :X :Y :PROC
IF :X > 55 STOP
PU
SETXY :X :Y
PD
SETHEADING 0
RUN SE :PROC []
LINE :X + 60 :Y :PROC

END

To draw a lot of little pictures, type DROVE and the
name of the procedure that draws the picture.
For example, type

DROVE "SNAIL

&&&
®f"®f"@yr

&~&
~&~
®!"®!"&

DROVE of Snails

Terrapin Logo Tutorial A-97

Appendix: Procedures

A-98

DROVE shows you the whole screen, since the drawing
begins in the lower left corner, and calls QUAD with a
Y value of -90, close to the bottom of the screen.
DROVE is in charge of the whole project.

QUAD tests to be sure you are not going to be drawing
off the top of the screen (Y > 90), then calls LINE with
a value for X (-125) which will start the drawing near
the left edge of the screen. When LINE has finished,
QUAD moves into position for the next line of pictures
and calls LINE again. QUAD uses LINE several times
to draw rows of pictures.

LINE tests to be sure you are not drawing off the right
side of the screen, then takes the beginning value of X
and the value of Y, and moves to that position. LINE
then uses RUN to call the procedure that draws the
picture, and calls itself with a new position to the right
(incremented value of :X, same value of :Y). LINE
draws one row of pictures.

0000
000

ry. u'"). Gj G:}

000
000

DROVE ofElephants DROVE ofRabbits

Terrapin Logo Tutorial

Appendix: Procedures

Developing an Arc Procedure

It is easiest to develop a circle procedure, then general­
ize it to do arcs. Then you can use the arc procedure to
do everything, including circles.

We want a circle procedure which will depend on the
radius, so that we can specify the size by giving the
radius when the procedure is run. We work from the
fact that the circumference of a circle equals the radius
times 2 PI: C = 2 PI (times) R, or, translating for the
computer, C = 2*3.14159*R.

In Logo, every drawing is some combination of steps
and turns, so the circle must also consist of steps and
turns. A circle of a certain fixed size is drawn by

REPEAT 360 [FD 1 RT 1]

The 360 comes from the turn of 1; to turn 360 degrees
with a turn of 1 degree requires 360 turns, or 360/1 =
360.

The 360 might also be said to represent the circumfer­
ence, the distance around. We can substitute for it the
equivalent 2 *3.14159* R. This makes the circumfer­
ence depend on the radius, as we wanted.

The turn must also be changed to be a function of the
radius; if we use the same step and turn as before, we
will not have changed the size of the circle. How can
we figure out what the turn should be?

With a turn of 1 degree, we figured out the number of
turns by dividing 360 degrees by that amount, to get

Terrapin Logo Tutorial A-99

Appendix: Procedures

360 turns. If we use the same relationship, we see that
the amount of turn is 360 divided by the number of
turns.

The number of turns in our new model is 2 * 3.14159 * R,
so the amount of the turn will be 360 / 2 * 3.14159 * R.

Our circle statement (type as one line) becomes

Type as one line REPEAT 2 * 3.14159 * :RADIUS
[FD 1 RT 360/(2*3.14159* :RADIUS)]

Our circle procedure becomes

TO RCIRCLE :RADIUS
Typeasoneline REPEAT 2*3.14159* :RADIUS

A-100

[FD 1 RT 360/(2* 3.14159 * :RADIUS)]
END

Type the REPEAT statement as one line, with only one
<RETURN>, at the end. Substitute LT for an LCIRCLE
procedure.

To change the circle procedure to an arc procedure, we
must change the number of turns to draw the fraction
of the circle the arc represents. How do we figure that
fraction?

A 60 degree arc is 60/360, or 116th of a circle. The frac­
tion of the circle which is any arc then, would be repre­
sented by (its size)/ 360. If we call its size :DEGREES,
then :DEGREES / 360 would be the fraction of the cir­
cle which is the arc of the size :DEGREES. (360/360 =
the circle)

Terrapin Logo Tutorial

Appendix: Procedures

The number of turns would be the fraction of the circle
represented by the arc, times the number required by
the full circle, or

(DEGREES/360)* (2 * 3.14159 * :RADIUS)

Th'e arc procedure would be

TO ARCR :RAD :DEG
Type as one line REPEAT (:DEG/360) * (2 *3.14159*:RAD)

[FD 1 RT 360/(2 *3.14159*:RAD)]
END

Simplifying by doing the arithmetic gives

TO ARCR :RAD :DEG
REPEAT .0174532 *:DEG* :RAD [FD 1 RT 57.295827 / :RAD]

END

The circle procedure becomes

TO RCIRCLE :RADIUS
ARCR :RADIUS 360

END

LCIRCLE would use ARCL, the same as ARCR with LT
substituted for RT. If you wanted to be silly, you could
write

TO ARCL :RADIUS :DEGREES
ARCR -:RADIUS (-:DEGREES)

END

Now all the arc and circle procedures are based on
one, and only one, procedure. Making the radius nega­
tive has the effect of making the turn negative, or LT.

Terrapin Logo Tutorial A-101

Appendix: Procedures

To increase the resolution of the picture, really only
desirable when you are going to print a design on pa­
per, decrease the size of the step. Replace the original 1
with :STEP and add the variable to the title.

To keep our procedure drawing arcs with the specified
radius, we must multiply the turn by the :STEP and
consequently, divide the number of turns by :STEP,
giving us (name changed to avoid confusion with the
non-variable step version):

TO RARC :RADIUS :DEG :STEP
Type as one line REPEAT (.0174532 *: DEG * :RADIUS)/:STEP

[FD :STEP RT (57.295827 * :STEP) /:RADIUS]

A-102

END

Debugging with TRACE, NOTRACE

TRACE allows you to watch the execution of your
procedure line by line. Logo prints a statement, waits
for you to type a character, then executes the statement.
TRACE also tells you when it is starting a subproce­
dure, and tells you what the inputs are.

In TRACE mode, type <CTRL> G, as usual, to stop a
procedure. <CTRL> Z will make it PAUSE; type CO
(or CONTINUE) to resume. Type NOTRACE to stop
tracing.

TRACE and NOTRACE may be used in a procedure to
trace just a portion of it.

Terrapin Logo Tutorial

Appendix: Procedures

Adding Remarks in Your Procedures

When you use descriptive procedure names and vari­
able names, and write short procedures and subproce­
dures, your need for remarks throughout your proce­
dures is lessened, and in many cases, eliminated.

However, for those remarks that simply must go in,
precede them with a semi-colon(;) as in the (not to be
taken seriously as an) example:

TO SQUARE
FD lOO;GOES FORWARD 100
RT 90;GOES RIGHT 90
SQUARE;CALLS ITSELF
END

Switching Disk Drives: SETDISK

Occasionally you may want to use more than one disk
drive-in your Logo system. Use the SETDISK com­
mand to switch back and forth between drives.
SETDISK takes two inputs, a drive number and a slot
number, and causes all subsequent file operations to be
done in that drive. For example, SETDISK 2 6 transfers
control to the second drive in a two-drive system. De­
fault is SETDISK 1 6.

Terrapin Logo Tutorial A-103

Appendix: Procedures

A-104

Creating Self-Starting Files
Using the STARTUP Variable

It is possible to write Logo files which begin executing
immediately after being read into the workspace.
There is an interesting way of doing this using the ad­
dress SAVMOD found in the ADDRESSES file (see sec­
tion 7 .2 of the Technical Manual); however, this way is
also rather difficult.

A much easier way to create self-starting files is to use
a STARTUP variable. Simply include in the file a
global variable consisting of a list of the procedure to
be started automatically. For example, if Logo encoun­
ters the message

MAKE "STARTUP [DEMO]

while reading in a file, the procedure DEMO will be gin
automatically.

Reading Apple Logo Files

Using Terrapin Logo, you can read files created with
Apple Logo from Apple Computer. It's as easy as
typing

READ "FILENAME

Of course, you will need to alter the syntax of some
procedures to make them run correctly.

You may encounter a message similar to THERE
IS NO PROCEDURE NAMED PPROP. If so, read in
the file using the READTEXT procedure which is
found in the TEXTEDIT file on the Utility disk.

Terrapin Logo Tutorial

Appendix: Words and Lists

Now type ED <return> and delete the off ending
command. Now type <CTRL>C to .define the
procedures.

A separate product available through Terrapin ,
Utilities II , contains an Apple Logo Translator
program which does this work for you. Contact
Terrapin for more information .

STRATEGIES FOR THE WORDS AND LISTS
PROJECTS

1. Here is one version.

TO EASY : CHTR
IF :CHTR = "F FD 10
IF :CHTR = "R RT 15
IF : CHTR = "L LT 15
IF :CHTR = "D DRAW
IF :CHTR = "U PU
IF : CHTR = "P PD

END

2. Use the same strategy, adding lines like

IF :CHTR ="SST
IF : CHTR = "H HT

3. For a two-keystroke method, EASY would need to
contain a line such as

IF :CHTR = "C SETPENCOLOR RC

As in QUICKDRA W, RC grabs a character from the
user , and SETPENCOLOR examines that character
and , if it is a number from Oto 6, sets the color accord­
ingly.

Terrapin Logo Tutorial -105

Appendix: Words and Lists

A-106

SETPENCOLOR could be written several ways. One
way that uses no new techniques is this:

TO SETPENCOLOR :CHTR
IF :CHTR = OPCO
IF : CHTR = 1 PC 1
IF :CHTR = 2 PC2
IF :CHTR = 3 PC 3
IF :CHTR = 4 PC4
IF :CHTR = 5 PC 5
IF :CHTR = 6 PC6

END

Logo, however, makes life much simpler . If the charac­
ter is not a number, it certainly is not a 0, 1, 2, 3, etc.,
and so we need not make all of those tests separately.
This is worded concisely in Logo:

IF NOT NUMBER? :CHTR STOP

Then, if it is a number less than 7, it must be a O
through 6, and we can just set the PENCOLOR to what­
ever CHTRhappens to be.

IF :CHTR < 7 PC :CHTR

And that is all the procedure needs to do. Here are two
ways to write that procedure.

TO SETPENCOLOR :CHTR
IF NOT NUMBER? :CHTR STOP
IF :CHTR < 7 PC :CHTR

END

Terrapin Logo Tutorial

Appendix: Words and Lists

TO SETPENCOLOR :CHTR
IF NUMBER? :CHTR THEN IF :CHTR < 7 PC :CHTR

END

As a frill, the line in EASY could be:

IF :CHTR = "C PRINTl [WHAT COLOR?] SETPENCOLOR RC

Look up PRINT1 in the Logo glossary.

4. You can use exactly the same strategy as above. Be­
cause the test for the second character is the same for
setting the background color as for setting the pen
color , it might make sense to use one procedure for
both.

The problem is that after the procedure has verified
that the character is a O through 6, it must know not
only what character was typed, but also which to set,
pen or background color.

Here is a procedure that can do both, but it involves
more advanced techniques than we have yet explained
in the tutorial. Don't worry! You can choose either to
use the ones fully explained, or jump the gun and try
the new technique.

TO SETCOLOR :WHICHCOLOR :CHTR
IF NOT NUMBER? :CHTR STOP
IF :CHTR > 6 STOP
IF :WHICHCOLOR = [PEN] PC :CHTR ELSE BG :CHTR

END

Terrapin Logo Tutorial A-107

Appendix: Words and Lists

A-108

The lines in EASY would need to be slightly different,
stating which color, PEN or BACKGROUND, was to be
changed. Here is one "set of possibilities.

IF :CHTR = "C PRINT1 [WHAT COLOR?] SETCOLOR [PEN]
RC

IF :CHTR = "B PRINT1 [WHAT COLOR?] SETCOLOR
[BACKGROUND] RC

5. Recognizing and using digits can be done several
ways. The simplest (if not most elegant) way to write
EASY would be to add a bunch of lines like this:

IF: CHTR = 2 MAKE "MULTIPLE 2
IF :CHTR = 3 MAKE "MULTIPLE 3
IF :CHTR = 4 MAKE "MULTIPLE 4
IF :CHTR = 5 MAKE "MULTIPLE 5
IF :CHTR = 6 MAKE "MULTIPLE 6
IF :CHTR = 7 MAKE "MULTIPLE 7
IF :CHTR = 8 MAKE "MULTIPLE 8
IF :CHTR = 9 MAKE "MULTIPLE 9

Of course, all these lines say essentially the same
thing, namely: "If the character is a number, make
MULTIPLE that number.'' That can be translated
straightforwardly into Logo with the much more
compact statement.

IF NUMBER? :CHTR MAKE "MULTIPLE :CHTR

Inserting this new logic into EASY requires that we
use the new value, and so the lines that move the turtle
must now incorporate MULTIPLE thus:

Terrapin Logo Tutorial

Appendix : Words and Lists

IF :CHTR = "F FD 10 * :MULTIPLE
IF :CHTR = "R RT 15 * :MULTIPLE
IF :CHTR = "L LT 15 * :MULTIPLE

Alternatively, the lines could be

IF :CHTR = "F REPEAT :MULTIPLE [FD 10] etc.

Finally, we always want to reset the multiple to 1 so
that it doesn't spill over from one command to the
next.

Here is how the procedure might look.

TO OUICKDRAW
EASY RC
OUICKDRAW

END

TO EASY : CHTR
IF :CHTR = "F FD 10 * :MULTIPLE
IF :CHTR = "R RT 15 * :MULTIPLE
IF :CHTR = "L LT 15 * :MULTIPLE
IF :CHTR = "D DRAW
IF :CHTR = "U PU
IF :CHTR = "P PD
IF :CHTR = "H HT
IF : CHTR = "S ST
IF: CHTR = "C PRINT1 [WHAT COLOR?] SETCOLOR [PEN]

RC
IF :CHTR = "B PRINT1 [WHAT COLOR?] SETCOLOR [BG]

RC
MAKE "MULTIPLE 1
IF NUMBER? :CHTR MAKE "MULTIPLE :CHTR

END

Terrapin Logo Tutorial A-109

Appendix: Words and Lists

A-110

EASY sets MULTIPLE to 1 every time it is executed. As
already mentioned, this is so that Lor For R will mean
the same as 1L or 1F or 1R each time unless some other
number is typed.

The placement of the MAKE "MULTIPLE 1 line is
important. It must be placed after the lines that use
the value of MULTIPLE and before the line that sets
MULTIPLE to values other than 1. Otherwise the spe­
cial values of MULTIPLE would persist too long or be
erased too soon.

A second thing to notice is that EASY cannot use
MULTIPLE before setting it the first time. So before
QUICKDRA W can be started, MULTIPLE must be
given a value (presumably the value 1). This startup
procedure seems convenient:

TO QD
MAKE "MULTIPLE 1
QUICKDRAW

END

6. The procedure PEN picks the pen up if it is already
down, and puts it down if it is already up. We say it
"toggles the pen state." To include it in EASY, only one
line is needed:

IF :CHTR = "P PEN

The line IF :CHTR = "U PU can be eliminated, because
P now takes care of both PD and PU.

Since PEN uses the variable PENPOS, QD (the setup
procedure written earlier) should initially set the pen
position to [DOWN].

Terrapin Logo Tutorial

TO OD
MAKE "MULTIPLE 1
MAKE "PENPOS [DOWN]
QUICKDRAW

END

Appendix: Words and Lists

It is also possible to set up a toggle that works with­
out setting a global variable with MAKE. Look up
TURTLESTATE in the Logo glossary, and learn about
FIRST (from the glossary or later in this chapter) to
understand this alternate version of PEN which we are
calling TOGGLEPEN.

TO EASY : CHTR
IF :CHTR = "F FD 10
IF :CHTR = "R RT 15
IF :CHTR = "L LT 15
IF :CHTR = "D DRAW
IF :CHTR = "P TOGGLEPEN

END

TO TOGGLEPEN
IF FIRST TS PU ELSE PD

END

TS is the abbreviation for TURTLESTATE. The first
element of the list that TS outputs tells whether the
turtle's pen is up or down. If it is down (if FIRST TS is
TRUE) TOGGLEPEN puts it up, otherwise it puts it
down.

In this case, since no global variable is involved, no
additions to QD would need to have been made.

Terrapin Logo Tutorial A-111

Appendix: Words and Lists

A-112

7. TO TOGGLE.SHOWN
TEST :SHOWN= [SHOWN]
IFTRUE HT MAKE "SHOWN [HIDDEN]
IFFALSE ST MAKE "SHOWN [SHOWN]

END

It is not necessary to tell the user whether the turtle is
shown or not, so the PRINT statement was not added.
Since the values [SHOWN] and [HIDDEN] now serve
only as information to the procedure (they will not be
printed as information to the user), it would be more
"natural" to use TRUE and FALSE to state whether the
turtle was shown.

The logic would then be this: If the turtle is shown
(that is, if SHOWN is TRUE) then hide the turtle, else
show it. In either case, make SHOWN whatever it was
not; use the primitive NOT to make it FALSE if it is
TRUE, or TRUE if it is FALSE.

TO TOGGLE.SHOWN
IF :SHOWN HT ELSE ST
MAKE "SHOWN NOT :SHOWN

END

Finally, a strategy using TURTLESTATE and avoiding
the use of global variables works for showing and hid­
ing the turtle as well as for the pen position.

Again, this strategy makes use of techniques we have
not yet described, but which you can look up if you
want to begin learning about them now.

Terrapin Logo Tutorial

Appendix: Words and Lists

TOGGLE.SHOWN using TURTLESTATE would look
like this:

TO TOGGLE.SHOWN
IF FIRST BUTFIRST TS HT ELSE ST

END

See TURTLESTATE, and learn about BUTFIRST (in
the glossary or later in this chapter).

8. ACTION no longer needs to control the turns di­
rectly, but can handle turning the way it handles
speed. So, it might look like this:

TO ACTION :CHTR
IF :CHTR = "R MAKE "ANG :ANG + 2 ;TURN RIGHT

MORE
IF :CHTR = "L MAKE "ANG :ANG - 2 ;TURN LEFT MORE
IF :CHTR = "F MAKE "DIST :DIST+ 2; FASTER
IF :CHTR = "S MAKE "DIST :DIST - 2; SLOWER
IF :CHTR = "D DRAW

END

START now has to initialize one more global variable
ANG, to something sensible, and might look like this:

TO START
MAKE "DIST 0
MAKE "ANG 0
LOOP

END

Terrapin Logo Tutorial A-113

Appendix: Words and Lists

A-114

It might also be nice if the D key really reset every­
thing. As the program currently stands, D will clear the
screen, but still leave the turtle flying around in what­
ever way it last flew. It might be reasonable to change

IF :CHTR = "D DRAW
to

IF : CHTR = "D CLEAR

and then to write a procedure CLEAR which reini­
tializes the global variables and clears the screen.

TO CLEAR
MAKE "ANG 0
MAKE "DIST 0
DRAW

END

9. The feature to stop the turtle must reinitialize ANG
and DIST without clearing the screen. Here is one.

TO RESET
MAKE "ANG 0
MAKE "DIST 0

END

Then the lines in ACTION would be

IF :CHTR = "D CLEAR

to accomplish the previous task of clearing the screen,
and

IF :CHTR = ". RESET

Terrapin Logo Tutorial

Appendix: Words and Lists

to stop the turtle without clearing the screen. (The
command character to stop the turtle is the period.)

Here are lines for reversing the rotation of the turtle,
reversing the direction of the turtle and reversing both.
Insert them and play with them. The effects are very
interesting.

IF :CHTR = 'T MAKE "ANG (-:ANG); REVERSES TURN
IF :CHTR = "M MAKE "DIST (-:DIST); REVERSES

MOVEMENT
IF :CHTR = "B MAKE "DIST (- :DIST)

MAKE "ANG (-:ANG); REVERSES BOTH

10. TO DECODE :N
OP NTH :N "ABCDEFGHIJKLMNOPQRSTUVWXYZ

END

There is another way that doesn't involve "counting"
with NTH (and therefore is faster). CHAR is a Logo
primitive that takes an integer as input and outputs the
character whose ASCII code is that integer. The ASCII
code for A is 65. For B, it is 66; for C, 67, and so on. So
another way to write DECODE is:

TO DECODE :N
OP CHAR(: N + 64)

END

11. TO ONENUM :LIST
OP DECODE FIRST :LIST

END

Terrapin Logo Tutorial A-115

Appendix: Words and Lists

A-116

12. TO TWONUM :LIST
OP WORD DECODE FIRST :LIST ONENUM

BF :LIST
END

13. TO THREENUM :LIST
OP WORD DECODE FIRST :LIST TWONUM

BF :LIST
END

14. Here is the logic. If I have only one number in my
list, I know exactly what to do. As in ONENUM , I sim­
ply OP DECODE FIRST :LIST.

If my list is longer than that, I cannot handle it all at
once, so I get ready to glue together the decoding of the
first number (which I can do immediately) and the de­
coding of a slightly shorter list.

Since the exact same reasoning applies to the slightly
shorter list, the same procedure can be used. Either it
can now handle the list directly (because there is only
one number left in it) , or it , too, gets ready to glue on its
little piece and defers the rest of the job to another step.
Here is the procedure it generates.

TO ANYNUM :LIST
IF l BF : LIST) = []

OP DECODE FIRST :LIST
OP WORD DECODE FIRST :LIST

ANYNUM BF :LIST
END

Terrapin Logo Tutorial

Appendix: Words and Lists

15. This could all be done in a single procedure with
one long and ugly line that looks something like this:

TO RANDSENT
PR (SE NTH 1 + RANDOM 7 PEOPLE

NTH 1 + RANDOM 6 ACTIONS
NTH 1 + RANDOM 7 PEOPLE)

END

The repetitive elements and the difficulty of seeing
which words go with which make it useful to write a
helpful subprocedure. Good style makes it easy to
change and extend the program if you want to. Here is
a first attempt:

TO RANDSENT
PR SENTENCE WHO DIDWHAT

END

TO WHO
OP PICK 7 PEOPLE

END

TO DIDWHAT
OP SE DIDIT WHO

END

TO DIDIT
OP PICK 6 ACTIONS

END

TO PICK :LISTSIZE :LIST
OP NTH 1 + RANDOM :LISTSIZE :LIST

END

Terrapin Logo Tutorial A-117

Appendix: Words and Lists

A-118

A problem with this way of doing things is that if
ACTIONS or PEOPLE are edited, and the number of
items in their lists is changed, WHO and DIDIT must
also be edited, because they make explicit assump­
tions about the length of the lists they get.

This is not good programming practice, but fortu­
nately LISTSIZE can always be determined from LIST
just by counting, if we had a procedure that could
count the elements in a list.

The procedure COUNT, which takes a list (or a word)
as its input, does exactly this. (In Terrapin Logo ver­
sion 2.0, COUNT is defined as a primitive.)

TO COUNT :OBJ
IF :OBJ=[] OP 0
OP 1 + COUNT BF :OBJ

END

To see what COUNT does, type

COUNT [L O G OJ
COUNT [LOGO]
COUNT "LOGO

Because PICK can use COUNT to determine the list's
size, it no longer needs to be told the size, and so
LISTSIZE can be dropped from the title line. Where
that information was needed in the body of the old ver­
sion, COUNT :LIST can be substituted. The result is a
procedure that looks like this.

TO PICK :LIST
OP NTH 1 + RANDOM (COUNT :LIST) :LIST

END

Terrapin Logo Tutorial

Appendix: Words and Lists

Because PICK now takes only one input- the actual
list- WHO and DIDIT need to be edited to use PICK
properly.

TO WHO
OP PICK PEOPLE

END

TO DIDIT
OP PICK ACTIONS

END

The resulting program not only solves the problem
raised earlier - namely, that PEOPLE and ACTIONS
can be edited freely without requiring changes to be
made in WHO and DIDIT-but it also looks" cleaner."

It is a general rule of good programming that by design­
ing the "low level procedures" (such as PICK) properly,
the higher level procedures (such as WHO) become
cleaner, better organized, and easier to under-
stand and debug.

16. As with all procedures, there are lots of possible
designs. Here is one for VOWEL?.

TO VOWEL? : LETTER
IF :LETTER= "A OP "TRUE
IF :LETTER= "E OP 'TRUE
IF :LETTER= "I OP 'TRUE
IF :LETTER= "O OP 'TRUE
IF :LITTER= "U OP 'TRUE
OP "FALSE

END

Terrapin Logo Tutorial A-119

Appendix: Words and Lists

A-120

But the logic is that IF the :LETTER is any one of A, E, I,
0, or U, then OP "TRUE, otherwise OP "FALSE. This
might be more concisely expressed as

TO VOWEL? :LETIER
IF MEMBER? :LETIER [A EI OU] OP "TRUE
OP "FALSE

END

But remember, MEMBER? is a predicate itself. It al­
ready outputs TRUE or FALSE, exactly what we want
VOWEL? to output. So, VOWEL? can also be written:

TO VOWEL? :LETIER
OP MEMBER? :LETIER [A EI OU]

END

oreven

TO VOWEL? :LETIER
OP MEMBER? :LETIER "AEIOU

END

18. It is tempting to write a YES? procedure modeled
on VOWEL? like this:

TO YES?
OP MEMBER? REQUEST [[YES] [YUP] [Y] [SURE]

[YEAH]]
END

but all life is not that simple. What if the person types [I
SUPPOSE SO]? The procedure would translate that as
if it were a clear NO, when it is probably YES, or at least
ambiguous. Alas, we must work harder.

Terrapin Logo Tutorial

Appendix: Words and Lists

Here is a suggestion.

TO YES?
OP YESSUB? REQUEST

END

TO YESSUB? :RESPONSE
IF MEMBER? :RESPONSE [[YES] [YUP] [Y] [SURE]

[YEAH]] OP "TRUE
IF MEMBER? :RESPONSE [[NO] [NOPE] [NJ] OP

"FALSE
PRINT1 [PLEASE ANSWER "YES" OR "NO":]
OP YES?

END

This is recursive in a new way. YES? is not defined in
terms of itself, nor is YES SUB? - but each is defined
in terms of the other! Make sure you understand how
these two procedures work together.

18. Either of the first two work properly. To see what is
wrong with the third version, try PLURAL "OX.

19. It would be convenient to have a procedure that re­
turned the last two letters of a word. Of course, if there
is only one letter in the word, LASTTWO must output
the whole thing.

TO LASTTWO :WORD
IF H = BL :WORD OP :WORD
OP WORD LAST BL :WORD LAST :WORD

END

Terrapin Logo Tutorial -121

Appendix: Words and Lists

A-122

Now we can write a rule for handling words that need
ES endings. Let's replace

IF "X = LAST :NOUN OP WORD :NOUN "ES

with

IF NEEDS.ES? :NOUN OP WORD :NOUN "ES

Cheating! NEEDS.ES? hasn't been written yet.

TO NEEDS.ES? :NOUN
IF (ANYOF "S = LAST : NOUN

"X = LAST :NOUN
"Z = LAST :NOUN) OP 'TRUE

OP ANYOF "CH = LASTIWO :NOUN
"SH = LASTIWO : NOUN

END

Alas, the formatting which makes the design so clear
on paper is all lost in Logo's editor!

20. IF "Y = LAST :NOUN OP WORD BUTLAST
:NOUN"IES

21. Ah, but not if the letter before the Y is a vowel!

IF "Y = LAST :NOUN OP YPLU :NOUN

TO YPLU :NOUN
IF VOWEL? LAST BL :NOUN OP WORD :NOUN "S
OP WORD BUTLAST :NOUN "IES

END

Terrapin Logo Tutorial

Appendix: Words and Lists

22. The big difference between FIXVERB and
PLURAL is in their handling of lists. In the case of
nouns, it was always the LAST element of the list that
needed to be pluralized, but in the case of the verbs in
ACTIONS, it is always the FIRST element that needs
the modification. So the important line to change is the
one that begins

IF LIST?

For FIXVERB, it might look like this:

IF LIST? :VERB OP SE FIXVERB FIRST :VERB BF :VERB

PAST and FIXVERB appear to have absolutely iden­
tical logic, but their exceptions are different. This
brings up an interesting problem. The solution used in
PLURAL was to create global variables which con­
tained the proper form of exceptional words. What
happens with verbs like HAVE or GO which have
different exceptions for present and past forms?
Although there is always a way to solve the problem
if you notice it, the use of global variables is prone
to surprising bugs until you notice the conflict.

TO PRESENT :SUBJ :VERB
IF "BE= :VERB OP EXCEPTION.BE :SUBJ
IF (ANYOF "I = :SUBJ

"YOU = :SUBJ
"WE= :SUBJ
"THEY= :SUBJ) OP :VERB

OP FIXVERB :VERB
END

Try to write EXCEPTION.BE yourself!

Terrapin Logo Tutorial A-123

Appendix: Words and Lists

23. An extra level of analysis is needed in order to de­
termine which class of verbs (which conjugation) is
involved .

Here is a simplifying structure for the top level. It uses
global variables in a risky way, but the structure will be
fairly clear.

TO PRESENT :SUJET :VERSE
MAKE "ROOT BL BL :VERSE; SEPARATE ROOT
MAKE "END LASTIWO :VERSE; SEPARATE CONJ.

MARKER
; AND NOW, HANDLE EACH CASE SEPARATELY
IF "ER = :END OP ER.PRES :SUJET :ROOT
IF "IR = :END OP IA.PRES :SUJET :ROOT
IF "RE= :END OP RE.PRES :SUJET :ROOT

END

In the following case, make a further distinction.

TO IA.PRES :SUJET :ROOT
IF "O = LAST :ROOT OP DIR.PRESENT :ROOT
OP XIA.PRESENT :ROOT

END

The rest is yours.

24. The relevant change to make is this

IF MEMBER? REQUEST :ANSWER PR [YUP!]

25. This version of ADDQUIZ takes a number as input
and keeps giving problems until that many problems
have been answered correctly.

Terrapin Logo Tutorial

Appendix: Words and Lists

TO ADDQUIZ :TIMES
IF :TIMES= 0 STOP
IF ADDQ RANDOM 13 RANDOM 13 ADDQUIZ :TIMES - 1

ELSE ADDQUIZ :TIMES
END

TO ADDQ :Nl :N2
PRINT1 (SE :Nl "+ :N2 "'= ')
IF (:Nl + :N2) = FIRST RQ PR [VAY!] OP 'TRUE
PR (SE "NOPE, :Nl "+ :N2 "= :Nl + :N2)
OP "FALSE

END

Notice that the only differences in ADDQ are that it
outputs TRUE if the answer is correct and FALSE
otherwise.

26. Here is one form. Are there bugs? Is there a cleaner
way?

TO ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG
IF :TIMESWRONG = 2 STOP
IF :TIMESRIGHT = 3 ADDQUIZ :MAX + 1 0 0 STOP
IF ADDQ RANDOM :MAX RANDOM :MAX

THEN ADDQUIZ :MAX :TIMESRIGHT + 1
:TIMESWRONG STOP
ELSE ADDQUIZ :MAX :TIMESRIGHT
:TIMESWRONG STOP

ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG + 1
END

Start it by typing

ADDQUIZ 4 3 0

Terrapin Logo Tutorial -1 5

Appendix: Words and Lists

A-126

2 7. The logic we are trying to add is this: ADDQ is told
what the problem is and how many tries the person has
already made.

TO ADDO :TRIES :Nl :N2

If that number (TRIES) is 2, ADDQ should give the cor­
rect answer and output FALSE.

IF :TRIES= 2 PR (SE :Nl "+ :N2 "= :Nl + :N2) OP
"FALSE

Otherwise, ADDQ should state the problem as before
and allow the person another try. If the person gets the
right answer, ADDQ says YAY and outputs TRUE, as it
did before.

PRINTl (SE :Nl "+ :N2 "'= ')
IF (:Nl + :N2) = FIRST RO PR [VAY!] OP "TRUE

But if the person gets the wrong answer, ADDQ should
say "try again," give the same problem as before, and
know that the person has taken one more try at answer­
ing it.

PRINT [TRY AGAIN]
OP ADDO :TRIES + 1 :Nl :N2

Of course, ADDQUIZ must start ADDQ by telling it
that no tries have yet been made.

IF ADDO O RANDOM :MAX RANDOM :MAX etc.

Terrapin Logo Tutorial

Appendix: Words and Lists

The completed program might look like this.

TO ADDQUIZ :MAX :TIMESRIGHT :TIMESWRONG
IF :TIMESWRONG = 2 STOP
IF :TIMESRIGHT = 3 ADDQUIL:MAX + 100 STOP
IF ADDQ O RANDOM :MAX RANDOM :MAX

END

ADDQUIZ :MAX :TIMESRIGHT + 1
:TIMESWRONG STOP

ELSE ADDQUIZ :MAX :TIMESRIGHT
:TIMESWRONG + 1 STOP

TO ADDQ :TRIES :Nl :N2
IF :TRIES= 2 PR (SE :Nl "+ :N2 "= :Nl + :N2)

OP "FALSE
PRINTl (SE :Nl "+ :N2 '"= ')
IF (:Nl + :N2) = FIRST RQ PR [VAY!] OP "TRUE
PRINT [TRY AGAIN]
OP ADDQ :TRIES + 1 :Nl :N2

END

28. PICK can select some element from the STATES
list. Each element of the STATES list contains both a
question as its FIRST and an answer as its LAST (or
BUTFIRST). This is just what QA needs. The hitch is
that if we simply type

QA FIRST PICK :STATES LAST PICK :STATES

Logo will run PICK twice, and each time PICK is run it
may pick a different element from the list! QA needs to
take the FIRST and LAST (or BUTFIRST) of the same
element.

Terrapin Logo Tutorial A-127

Appendix: Words and Lists

A-128

The first thing to resolve is whether we use the LAST
or BUTFIRST of the element. It makes a big difference ,
since the LAST is a word and the BUTFIRST is a list.

Since QA compares its :ANSWER with a REQUEST
(which is always a list), we might as well use BF. One
way STATESQUIZ might work is this:

TO STATESQUIZ
REPEAT 5 [MAKE "QLIST PICK :STATES QA FIRST :QLIST

BF :QLISTJ
END

An alternative that is neater in a few ways is this:

TO STATESQUIZ
REPEAT 5 [STATEQA PICK :STATES]

END

TO STATEQA :QLIST
QA FIRST :QLIST BF :QLIST

END

29. The BF of [IOWA [DES MOINES]] is [[DES
MOINES]] but we want [DES MOINES] to compare to
the sentence typed to REQUEST. In this case, we
would have been better off taking the LAST rather
than the BUTFIRST. How do we resolve the problem?

The real problem is that the database :STATES has
both words and lists as possible answers. This makes
it difficult to check for equality.

Terrapin Logo Tutorial

Appendix: Words and Lists

If the answer-part of each element of the : ST A TES list
was always a list, we could consistently choose the
FIRST for the question, and the LAST for the answer.

So, we make states differently:

MAKE "STATES [[OHIO [COLUMBUS]] [[NEW YORK]
[ALBANY]] [GEORGIA [ATLANTA]] [IOWA
[DES MOINES]]]

And we redefine ST A TEQA

TO STATEQA :ULIST
QA FIRST :GUST LAST :QLIST

END

30. 'Tis all yours!

31. The changes would be in the form:

IF :CHAR= "F RUN.AND.RECORD SE "FD 10 * :MULTIPLE
IF :CHAR= "R RUN.AND.RECORD SE "RT 15 *: MULTIPLE
IF :CHAR= "L RUN.AND.RECORD SE "LT 15 * :MULTIPLE

There are two subtleties. One is that the command
lines read:

IF :CHAR= "F RUN.AND.RECORD SE "FD 10 * :MULTIPLE

and not (more simply)

IF :CHAR= "F RUN.AND.RECORD [FD 10 * :MULTIPLE]

Terrapin Logo Tutorial A-129

Appendix: Words and Lists

A-130

The reason is that although the second version will
RUN correctly, the command that will be LPUT on the
history list will be, literally, [FD 10 * :MULTIPLE]
rather than the desired [FD 30] or whatever it is.

RUN and REPEAT are the only primitives that are ca­
pable of evaluating what is inside a list.'Everything
else just treats it as text without meaning.

Also, remember that TOGGLEPEN must be edited to
record its ups and downs.

32. Lines like IF :CHAR="< RCIRCLE :SIZE would
be needed, but you must provide the mechanism for
setting :SIZE just as you had for the forward and turn­
ing commands.

If you allow ARC (first introduced in the section on
OUTPUT) to take an angle input as well as the two it
now takes, SEGMENTS and CHORD, the new proce­
dures RCIRCLE and LCIRCLE can then be defined by
using ARC with angles of 18 and -18 respectively.

33. The procedure itself is very straightforward. It
depends on lists of the verbs, nouns, proper names,
and so forth.

So far, procedures to output verbs and proper names
have been created, as has a global variable containing
adverbs. The following definition of MAD LIB further
assumes procedures NOUNS and ADJECTIVES that
must be created on the model of ACTIONS and
PEOPLE.

Terrapin Logo Tutorial

Appendix: Words and Lists

TO MADLIB :TEXT
OP MAD "V ACTIONS MAD "N NOUNS MAD "PN

PEOPLE MAD "ADV :ADVERBS
MAD "ADJ ADJECTIVES :TEXT

END

34. With the example that was given, all that is
needed is to check both the words themselves (i.e.,
PN LOVES PN<comma> BUT PN CAN'T STAND
PN<period>) and the butlast of the words (i.e., P
LOVE PN BU P CAN' STAN PN). All of the PNs will be
caught this way. The test

IF BL FIRST :CONTEXT= :KEY

will do that job. If the butlast of the word is KEY, then
the last will be the punctuation mark. By picking an
alternate and wording the punctuation mark to the
end of it,

WORD PICK :ALT LAST FIRST :CONTEXT

the original punctuation has been restored. Finally,
this word must be integrated into the developing
sentence just as if the punctuation problem had not
occurred.

OP SE WORD PICK :ALT LAST FIRST :CONTEXT
MAD :KEY :ALT BF :CONTEXT

Altogether the new line of the procedure is:

IF BL FIRST :CONTEXT= :KEY
OP SE WORD PICK :ALT LAST FIRST :CONTEXT

MAD :KEY :ALT BF :CONTEXT

Terrapin Logo Tutorial A-131

Appendix: Words and Lists

A-132

There is a problem. What if one of the keywords were
N, as in problem 33, and one of the words of the sen­
tence were "NO"? Butlast of the word NO would
falsely match the keyword, and NO would be re­
placed with a noun!

A more complex and sophisticated procedure could
be written, but the best solution is to make keywords
clearly distinct from text. If keywords all began with
some non-text character, so that they could never be
generated from a text word (as happened when N was
generated from NO), the problem would be solved.

Recommendation: Begin keywords with <period>.

Thus, madlib sentences would look like this:

[.PN LOVES .PN, BUT .PN CAN'T STAND .PN.J

Note that MAD never tests for the special keyword
marker. The marker just serves to prevent mishaps.

Does the order in which the tests are performed mat­
ter?

TO MAD :KEY :ALT :CONTEXT
IF :CONTEXT=[] OP[]
IF (FIRST :CONTEXT)= :KEY OP SE PICK :ALT

MAD :KEY :ALT BF :CONTEXT
IF BL FIRST :CONTEXT= :KEY OP SE WORD PICK :ALT

LAST FIRST :CONTEXT MAD :KEY :ALT BF :CONTEXT
OP SE FIRST :CONTEXT MAD :KEY :ALT BF :CONTEXT

END

Terrapin Logo Tutorial

Appendix: Words and Lists

35. Let's title the procedure this way.

TO MADLIB :TEXT :KEYS

The logic is that if there are no keywords at all to find
and replace, then the text must be returned as it is.

IF EMPTY? :KEYS OP :TEXT

If there are keys to replace, then

1) using the first of them, replace each in­
stance of it in the text with a suitable alterna­
tive (this is accomplished by MAD) and

2) use that as the text in which to search for
the remaining keys. This is the purpose of
MADLIB, itself, and is thus the recursive
step.

Worded more like the program, we are to output the
MADLIB of and a list of the remaining keys.

Skipping over a detail, the Logo might look something
like this:

OP MADLIB (MAD FIRST :KEYS somethingorother :TEXT)
BF:KEYS

The "somethingorother" needs some thinking.

In previous situations, the key words bore no relation
to the procedures or variables that contained the corre­
sponding lists. This is inconvenient, since there is no
way to know from looking at the key word, just where
to find its substitutes.

Terrapin Logo Tutorial
A-133

Appendix: Words and Lists

A-134

But that can be corrected. Abandon the old design of
having V refer to a procedure ACTIONS, and ADV to a
variable ADVERBS.

From now on, we must be consistent about using
either procedures or variables. Further, the keyword
will be the name of the variable or the title of the pro­
cedure.

Choosing to go with global variables, we can then say
that if MAD's KEY is the first of MADLIB's KEYS,
MAD's ALT will be the THING of the first ofMADLIB's
KEYS. MADLIB would then look like this:

TO MADLIB :TEXT :KEYS
IF EMPTY? :KEYS OP :TEXT
OP MADLIB (MAD FIRST :KEYS THING FIRST :KEYS

:TEXT) BF :KEYS
END

If we chose to use procedures titled by KEY, then
MAD's ALT would be the result of RUNning the first of
MADLIB's KEYS.

TO MADLIB :TEXT :KEYS
IF EMPTY? :KEYS OP :TEXT
OP MADLIB (MAD FIRST :KEYS RUN (SE FIRST :KEYS)

:TEXT) BF :KEYS
END

The most important element here became the willing­
ness to abandon some old designs and rethink the rela­
tionship between parts of the problem.

Terrapin Logo Tutorial

Appendix: Words and Lists

36. GREET needs to look at what OUTPUT.NAME
gives it and determine, first, if the result is a name or a
response. Here is a possible method:

TO RESPOND :NAME.OR.PHRASE
IF WORD? :NAME.OR.PHRASE GREET
:NAME.OR.PHRASE STOP
PRINT :NAME.OR.PHRASE

END

TO FRIENDLY
PR [WHAT'S YOUR NAME?]
RESPOND OUTPUT.NAME REQUEST

END

37. Just before the neutral answer (OP [I WAS JUST
CURIOUS]) the procedure must look for negatives,
and should respond appropriately if it finds any.

IF FIND? [WON'T NONE DON'T NOT NO] :SENT OP
[SORRY I ASKED]

FIND? is simply a fancy MEMBER?

TO FIND? :ITEMS :LIST
IF EMPTY? : ITEMS OP "FALSE
IF MEMBER? FIRST :ITEMS :LIST OP 'TRUE
OP FIND? BF :ITEMS :LIST

END

38. Any of a number of strategies will work. Be of
good cheer! The task of deciding which approach to
take should be simple for anyone who has gotten this
far.

Terrapin Logo Tutorial A-1 35

Appendix : Words and Lists

A-136

39. If punctuation only comes at the ends of words,
removing it is quite simple.

TO NOPUNC :WORD
IF MEMBER? LAST :WORD[",.!?] OP BL :WORD
OP :WORD

END

A more general solution, more powerful but slower, is:

TO NOPUNC :WORD
IF EMPTY? :WORD OP"
IF MEMBER? FIRST :WORD [",. ! ?] OP NOPUNC BF

:WORD
OP WORD FIRST :WORD NOPUNC BF :WORD

END

In either case, change FIRST :S to NOPUNC FIRST :S
throughout the CHECK procedure.

41. Sorry. From here on in, you are on your own!

Terrapin Logo Tutorial

w-N_D_Ex ______ _
TM in the Index listing refers to the Terrapin Logo Technical Manual.

" G-30, C-6, W-33
: G-50, C-6, W-61

+ G-5, C-1, TM: Chapter 3
- C-1, TM: Chapter 3
* G-5, C-1, TM: Chapter 3
I G-5, C-1, TM: Chapter 3

() C-2
<> B-11

> G-67, TM: Chapter 3
< G-67, TM: Chapter 3
= G-66 to G-67, TM: Chapter 3
? B-11,G-87
[] B-13, G-26
; A-103

.ASPECT, TM: Chapter 3

.BPT, TM: Chapter 3

.CALL, TM: Chapter 3

.CONTENTS, TM: Chapter 3

.DEPOSIT, TM: Chapter 3

.EXAMINE, TM: Chapter 3

.GCOLL, TM: Chapter 3

.NODES, TM: Chapter 3

A

Abbreviations, G-2, G-24
Abelson, Harold, B-2, B-5
ABS, C-24 to C-25
Absolute value, C-24 to C-25
ADDRESSES, TM: Chapter 6
Addition, G-5, C-1

Terrapin Logo Tutorial

ALLOF, W-70, W-112, TM:
Chapter 3

AMODES, TM: Chapter 6
ANIMAL program, A-30
ANIMAL.INSPECTOR

program, A-31
ANYOF, W-70, \'V-112, TM:

Chapter 3
Arcs, G-57 to G-58, A-21, A-99

to A-102
Arithmetic, G-5, G-47 to G-48,

C-1
Arrow keys, B-13 to B-14, G-16,

A-38
ASCII, W-59, A-115, TM:

Chapter 3
Assembler/Logo interfacing,

TM: Chapter 6
ASSEMBLER, TM: Chapter 6
ATAN, TM: Chapter 3

B

BACK, G-2, TM: Chapter 3
BACKGROUND, G-8, G-10,

TM: Chapter 2, 3
BELL, M-8
BF, W-43, M-12, TM: Chapter 3
BG, G-8, G-10, TM: Chapter 2, 3
Binary tree, G-73, A-85
BK, G-2, TM: Chapter 3
BL, W-43, TM: Chapter 3

1-1

Index

Blank disk, preparing for use,
B-6 to B-8

Brackets<>, B-11
Bugs, G-20, A-1
BUTFIRST, W-43, W-92, M-12,

A-113, TM: Chapter3
BUTLAST, W-43, W-92, TM:

Chapter 3

C

CATALOG, G-29, G-31 to G-32,
TM: Chapter 2, 3

Changing inputs, G-62
CHAR, W-59, A-115, TM:

Chapter 3, 7
Circles, G-57 to G-58
Clearing the workspace, G-32

to G-34
CLEARINPUT, TM: Chapter 3
CLEAR~CREEN, G-26, G-27,

TM: Chapter 3
CLEARTEXT, W-32, TM:

Chapter 3
CLOSE, A-24 to A-26
CO, G-81, TM: Chapter 3
Color, G-8 to G-10, G-75 to G-78
Comments, W-21, A-103
Computation, B-5, C-1
Conditional, G-66 to G-69
CONTINUE, G-81, TM:

Chapter 3
Control commands, See

<CTRL>, TM: Chapter 2, 7
Copying a procedure, G-46

I-2

COS, C-4, C-6, C-19, C-22, TM:
Chapter 3

Cosine, C-19, C-22
COUNT, A-118
CS, G-26, G-27, TM: Chapter 3
<CTRL> key, B-11, B-15
<CTRL> A, G-40 to G-41, A-38
<CTRL> B, A-39
<CTRL> C, G-14, G-18, A-41
<CTRL> D, G-40 to G-41, A-40
<CTRL> E, G-40 to G-41, A-39
<CTRL> F, G-7, A-39
<CTRL> G, B-12, B-15, G-14,

G-19, G-62, A-41
<CTRL> L, A-39
<CTRL> N, G-40 to G-41, A-38
<CTRL> 0, G-40 to G-41, A-39
<CTRL> P, G-5, G-40 to G-41,

A-38
<CTRL> S, G-7
<CTRL> T, G-7
<CTRL> W, G-43
<CTRL> X, G-41, A-40
<CTRL> Y, B-12, G-41, A-40
<CTRL> Z, G-81
Cursor, B-11, G-18, A-23 to

A-24, A-38
CURSOR.H, A-23
CURSOR.HV, A-23
CURSORPOS, A-23
CURSOR.V, A-23
Curves, G-57 to G-58

Terrapin Logo Tutorial

D

D, G-87
Debugging, G-20, G-79 to G-81,

G-83
DEF1NE, TM: Chapter 3
, B-13, B-14, G-16 to

G-17, A-40
diSessa, Andrea, B-2, B-5
Disk, backup of utilities, B-1 to

B-2
Disk preparation, B-6 to B-8
Division, G-5, C-1
Documentation manual, B-1
DOS, TM: Chapter 3
Dots, G-50, C-6
DPRINT, A-24 to A-26
DRAW, G-1, G-4, G-7, C-19,

C-21, TM: Chapter 3
Draw mode, G-1, TM:

Chapter 2
Driving the turtle, G-2
DROVE, A-97
Duration, M-2
DYNATRACK, A-32

E

ED, G-34 to G-35, TM:
Chapter 3

EDIT, G-34 to G-35, TM:
Chapter 3

Edit mode, G-14 to G-19
Editing commands, summary,

G-41, A-38 to A-41
Editor, G-40 to G-41

Terrapin Logo Tutorial

Index

Elephant mascot, B-3, A-92
Ellipse, C-19, C-25 to C-26
ELSE, W-70 to W-71, TM:

Chapter 3
Empty list, W-59 to W-60
Empty word, W-59
EMPTY?, W-23
END, G-14, G-22, C-8, TM:

Chapter 3
ERASE (ER), G-32 to G-34, TM:

Chapter 3
ERASE ALL, G-32 to G-33, TM:

Chapter 3
ERASE NAMES, TM: Chapter 3
ERASE PROCEDURES, TM:

Chapter 3
ERASEFILE, G-34, TM:

Chapter 2, 3
ERASEPICT, G-35 to G-36, TM:

Chapter 2, 3
Erasing, G-11
Erasing pictures, G-35 to G-36
ERNAME, TM: Chapter 3
Error messages, B-12, W-63,

A-1 to A-12
Errors, typing, B-13
<ESC>, B-13
Executing a procedure, G-20
EXPONENT, C-15 to C-18
Exponentiation, C-15 to C-18

F

F, G-87
FALSE, G-66 to G-69, W-70

I-3

Index

FD, G-2, G-3, TM: Chapter 3
FID, A-29, TM: Chapter 4
Files, G-29, G-33, M-1
FIRST, W-43, W-92, M-12, TM:

Chapter 3
FLASHING, A-23 to A-24
Floating point arithmetic, C-1
FORWARD, G-2, G-3, TM:

Chapter 3
FPUT, W-29, W-92, TM:

Chapter 3
Functions, C-4 to C-5
FULLSCREEN, G-7, TM:

Chapter 2, 3
Fundamentals of Logo music,

M-1

G

Global variables, C-6 to C-7,
W-12 to W-17

GO, TM: Chapter 3
GOODBYE, G-32, G-34, TM:

Chapter 3
Graphics, B-4, G-1, A-42
Graphics commands,

summary, G-5
Graphics mode, G-1
Graphing functions, C-19 to

C-26

H

Harmony, M-14
Heading, G-44

I-4

HEADING, G-83 to G-85, TM:
Chapter 3

HIDETURTLE, G-3 7, C-19,
C-21, TM: Chapter 3

Hierarchy of operations, C-2 to
C-3

History lists, W-95 to W-99
HOME, G-26, G-27, C-19, C-21,

TM: Chapter 3
HT, G-37, C-19, C-21, TM:

Chapter 3

I

IF, G-66 to G-69, VV-70, TM:
Chapter 3

IFFALSE (IFF), W-89, W-90,
TM: Chapter 3

IFTRUE (IFT), W-89, W-90,
TM: Chapter 3

IMMEDIATE mode, B-4, G-15
to G-16

Initializing a disk, B-6 to B-8
Input, G-48, G-76
Input, changing, G-62
Inputs, negative, G-81
INSPI, A-33, TM: Chapter 4
INSTANT, B-5, G-87 to G-90,

W-4, W-96
INTEGER, C-4 to C-5, TM:

Chapter 3
Integer, C-1
Integer operators, C-4 to C-5
Intelligent language

interpreter, W-106 to W-114
Interpretive language, B-4

Terrapin Logo Tutorial

INVERSE, A-23 to A-24, TM:
Chapter 4

Invisible turtle, G-3 7
ITEM, W-48

K

Keyboard, B-13
Keys, special, B-13

L

Language card, B-1
Language Disk, B-1
LARC, A-21
LAST, W-43, W-92, TM:

Chapter 3
LCIRCLE, A-22
LEFT, G-2, G-4, TM: Chapter 3
Levels of execution, W-63
LIST, W-52, W-90, TM:

Chapter 3
LIST?, W-54, W-76, W-89, TM:

Chapter 3
Listing a procedure, G-43
Listing: Summary of

commands, G-44
Lists, W-59
LOCAL, C-7 to C-13
Local variables, C-6 to C-13,

W-12 to W-17
Logo for the Apple II, B-2
LPUT, W-29, W-92, W-95, TM:

Chapter 3
LT, G-2, G-4, TM: Chapter 3

Terrapin Logo Tutorial

M

Mad-libs, W-100 to W-105
Magic number, G-46
Major key, M-5

Index

MAKE, C-7 to C-13, W-9, TM:
Chapter 3

Manual, Technical, B-1, B-2
Manual, Tutorial, B-1, B-2
Mascots, B-3, A-92 to A-98
MEMBER?, W-23, W-73, TM:

Chapter 3
Messages, error, A-1 to A-12
Mindstorms, Seymour Papert,

B-2
Mode, DRAW, G-1, G-4, C-19,

C-21, TM: Chapter 2, 3
Mode, EDIT, G-14 to G-19, A-38

to A-41
Mode, IMMEDIATE, B-4, G-15

to G-16
Mode, NODRAW, G-7, G-8,

TM: Chapter 2, 3
Multiplication, G-5, C-1
Music, B-6, M-1 to M-14
Music notation, M-4
Music procedures on Utilities

Disk, M-11 to M-14

N

N, G-87
Naming, G-14, G-30, G-50,

G-52, C-6
Negative inputs, G-81
ND, G-7, G-8, TM: Chapter 2, 3

1-5

Index

NODRAW, G-7, G-8, TM:
Chapter 2, 3

NORMAL, A-23 to A-24, TM:
Chapter 3

NOT, W-70, A-106, A-112, TM:
Chapter 3

NOTRACE, G-69, G-83, A-102,
TM: Chapter 3

NOWRAP, G-62, G-64, TM:
Chapter 3

NUMBER?; W-17, A-106, TM:
Chapter 3

Numeric operations, C-1 to C-3

0

Object, W-33 to W-36, W-86
OP, C-13 to C-18, W-37, W-43,

W-65, TM: Chapter 3
OPCODES, TM: Chapter 6
OPEN, A-24 to A-26
Operations, C-1 to C-3
Operators, C-1, C-4 to C-5
OPEN.FOR.APPEND, A-25 to

A-26
OUTDEV, TM: Chapter 2, 3, 6
Output, G-76, C-4 to C-6
OUTPUT, C-13 to C-18, W-37,

W-43, W-65, TM: Chapter 3
Overview, B-3 to B-6

p

P, G-87
PADDLE, TM: Chapter 3

1-6

PADDLEBUTTON, TM:
Chapter 3

Parabola, C-19, C-23 to C-25
Papert, Seymour, B-2
Parentheses, W-55, W-69, W-87

to W-88
PAUSE, G-81, TM: Chapter 3
PC, G-8, G-12, TM: Chapter 2, 3
PC 6, G-11 to G-12, G-64, G-74
PD, G-26, G-28, TM: Chapter 3
PENCOLOR, G-8 to G-12, TM:

Chapter 2, 3
PENDOWN, G-26, G-28, TM:

Chapter 3
PENUP, G-26, G-28, TM:

Chapter 3
Pictures, printing, TM:

Chapter 2
Pictures, saving on disk, G-35

to G-36, TM: Chapter 2, 3
Pitch, M-5
Planning a procedure, G-21 to

G-23, G-49 to G-50
PLAY,M-5
PLAY.NOTE, M-13
Plotter files, A-18, A-35 to A-37
PO, G-29, G-31 to G-32, G-43,

TM: Chapter 3
PO ALL, G-43, TM: Chapter 3
PO NAMES, TM: Chapter 3
Pointed brackets, B-11
POLY, G-53 to G-5 7
POTS, G-29, G-31 to G-32, TM:

Chapter 3
Predicates, W-72 to W-74

Terrapin Logo Tutorial

,

Primitive, B-4, G-12 to G-13
PRINT (PR), G-79, W-12, W-55,

W-88, TM: Chapter 3
PRINT1, W-55, W-88, A-107,

TM: Chapter 3
Printers, TM: Chapter 2
PRINTFILE, A-28
Printing pictures, A-16, A-29,

TM: Chapter 2
PRINTOUT, G-43, TM:

Chapter 3
PRINTOUT NAMES, TM:

Chapter 3
PRINTOUT PROCEDURES,

TM: Chapter 3
PRINTOUT TITLES, TM:

Chapter 3
PRINTTEXT, A-29
Procedural language, B-3
Procedure, B-4, G-12 to G-13
Procedure copying, G-46
Procedure writing, G-12 to

G-18
Procedure naming, G-13 to

G-14
Procedure saving on disk, G-29

to G-31, TM: Chapter 2, 3
Procedures, A-42
Procedures that take inputs,

G-48
Projects: changing inputs,

G-65, A-73
Projects: curves, G-57, A-68
Projects: history lists, W-99
Projects: ITEM, W-51

Terrapin Logo Tutorial

Index

Projects: language
understanding, W-115

Projects: mad-libs, W-105
Projects: MAKE, W-17
Projects: more shapes, G-48,

A-62
Projects: PLURAL, W-79
Projects: predicates, W-74
Projects: procedure, G-28, A-45
Projects: RC, W-8, W-22
Projects: recursion, G-73,

W-51, A-79
Projects: REQUEST, W-84
Projects: simple recursion,

G-62, A-71
Projects: sizeable shapes, G-53,

A-62
Projects: testing and stopping,

G-69, A-77
Projects: turtle driving, G-8,

A-42
Projects using RANDOM,

G-78, A-89
Projects using shapes, G-42,

A-48
Projects with regular polygons,

G-55, A-65
Prompt, B-11
PU, G-26, G-28, TM: Chapter 3

Q

Quiz programs, W-81 to W-85
QUOTIENT, C-4, C-5, TM:

Chapter 3

Index

R

R, G-87
Rabbit, B-3, A-93
RARC, A-21
RAM card, B-1
Random numbers, G-76
RANDOM, G-76, C-4, TM:

Chapter 3
RANDOMIZE, C-4, TM:

Chapter 3
RC, W-8, W-18, M-8, A-105,

TM: Chapter 3, 7
RC?, W-18, W-72, TM:

Chapter 3
RCIRCLE, A-21
READ, G-32 to G-33, TM:

Chapter 2, 3
READCHARACTER, W-8,

W-18, TM: Chapter 3, 7
READPICT, G-35 to G-36, TM:

Chapter 2, 3
READTEXT, A-27
Real numbers, C-1
Recalling lines, G-5, M-4
Recovery process, B-12
Recursion, G-61 to G-73, C-15

to C-18, W-48, W-100 to
W-105, M-12

Recursion projects, G-62, G-73
Recursive designs, G-73 , A-34
REMAINDER, C-4, C-5, TM:

Chapter 3
Remarks, A-103
REPEAT, G-26, TM: Chapter 3

J-8

Repeating with <CTRL> P,
G-5, M-4

<REPT> key, G-17
REQUEST, C-14 to C-17,

W-26, W-81 to W-84, TM:
Chapter 3

<RESET> key, B-12, B-15
Rests, M-6
RESULT:, W-60
<RETURN> key, B-11, G-17,

A-39
RIGHT, G-2, G-3, TM: Chapter 3
ROCKET, A-33
ROUND, C-4, TM: Chapter 3
RQ, W-26, W-81 to W-84, TM:

Chapter 3
RS PLOTTER, A-36 to A-3 7
RT, G-2, G-3, TM: Chapter 3
RUN, W-94 to W-99, A-96 to

A-98, TM: Chapter 3
Running a procedure, G-19 to

G-21

s

SAVE, G-29 to G-31, TM:
Chapter 2, 3

SAVEPICT, G-35 to G-36, TM:
Chapter 2, 3

SAVETEXT, A-28
Saving pictures, G-35 to G-36,

A-96
Saving procedures, G-29 to

G-32
Saving text, A-24 to A-28

Terrapin Logo Tutorial

Scales, M-5
Screen, G-7
SCREENDUMP, A-16, A-29
Self-starting files, A-104, TM:

Chapter 7
SENTENCE (SE), W-25, W-43,

W-86, M-13, TM: Chapter 3
SETDISK, A-103
SETH, G-83 to G-85, TM:

Chapter 3
SETHEADING, G-83 to G-85,

TM: Chapter 3
Setup, G-28
SETX, G-85 to G-86, TM:

Chapter 3
SETXY, G-85 to G-86, C-19 to

C-26, TM: Chapter 3
SETY, G-85 to G-86, TM:

Chapter 3
SHAPE.EDIT, TM: Chapter 5
SHOWF1LE, A-28
SHOWTEXT, A-28
SHOWTURTLE, G-37, TM:

Chapter 3
SIN, C-4, C-6, C-19, C-20 to

C-22, TM: Chapter 3
Sine, C-19, C-20 to C-22
SING, M-6
Single quote, W-5 7
Snail, B-3, A-94
Spaces in Logo lines, G-3, G-6,

G-18
Special effects, G-74 to G-78
Special Technology for Special

Children, B-2

Terrapin Logo Tutorial

SPLITSCREEN, G-7, TM:
Chapter 2, 3

Square, G-21 to G-25

Index

SQRT, C-4, C-5, TM: Chapter 3
ST, G-37, TM: Chapter 3
Starting Logo, B-8 to B-10
Starting Logo summary, B-16
STARTUP variable, A-104
State, G-44
STOP, G-66 to G-69, W-6, M-33,

TM: Chapter 3
STOPPED!, G-19
Structured programming, B-4
Subprocedures, G-58 to G-61
Subtraction, G-5, C-1
Summary: commands with

keyboard versions, G-25
Summary: editing commands,

G-41
Summary: listing commands,

G-44
Summary: Logo commands

used so far, G-38 to G-39
Summary: starting Logo, B-16
Summary: turtle commands,

G-5
Summary: words and lists

primitives, W-52
Superprocedure, G-58
SWEET-P, A-35
Syncopation, M-10
System commands, B-4

1-9

Index

T

Tangent, C-19, C-22 to C-23
TEACH, A-19
Technical Manual, B-1, B-2
Templates, W-111 to W-116
Terrapin Logo Package, B-1
Terrapin music system, M-14
TEST, W-89, TM: Chapter 3
Testing: IF-THEN-ELSE,

G-66 to G-69, W-70, TM:
Chapter 3

TET, G-73, A-34
TEXT, TM: Chapter 3
Text editor, using Logo as, A-24

to A-29
TEXTEDIT, A-26 to A-29
TEXTSCREEN, G-7, TM:

Chapter 3
THEN, G-66 to G-69, W-5,

W-71, TM: Chapter 3
THING, W-78, M-13, TM:

Chapter 3
THING?, TM: Chapter 3
TO, G-14, C-8, TM: Chapter 3
TONE,M-2
TONES,M-3
Top level, M-12
TOPLEVEL, W-4, W-6, TM:

Chapter 3
Total Turtle Trip Theorem,

G-47
TOWARDS, G-83, G-85, TM:

Chapter 3
TRACE, G-69, G-83, A-102,

TM: Chapter 3

1-10

Tree, G-73, A-85
TRUE, G-66 to G-69, W-70
TS, G-83 to G-84, TM:

Chapter 3
Tune blocks, M-8
Turtle, G-2
Turtle commands, G-5
Turtle driving projects, G-8,

A-42
Turtle geometry, Abelson &

diSessa, B-2, B-5
TURTLESTATE, G-83 to G-84,

A-112, TM: Chapter 3
Tutorial Manual, B-1, B-2
TWINKLE, M-9
Typing errors, correcting, B-13

to B-14

u

U, G-87
Utilities Disk, B-1, M-1, A-13
Utilities Disk, backup, B-2,

A-13
Utilities Disk files: summary,

A-14
Utilities Disk files:

explanation, A-18
Utilities Disk music

procedures, M-11 to M-14
Utilities Disk: use, A-13
Utilities: writing your own,

G-74 to G-76

Terrapin Logo Tutorial

V

Value, W-38
Variables, G-48 to G-52, C-6 to

C-7, W-12 to W-'l.7, W-60
Variables, global, C-6 to C-7
Variables, local, C-6 to C-7

w

Wild card, W-109
WORD, W-43, W-46, M-13,

TM: Chapter 3
WORD?, W-54, W-72, W-89,

TM: Chapter 3
Word processor, using Logo as,

A-24 to A-29
Words, W-56
Workspace, G-29, G-32, M-1
Workspace, clearing, G-32 to

G-34
WRAP, G-62, G-64, TM:

Chapter 3
Writing a procedure, G-12 to

G-18, C-8 to C-9

X

XCOR, G-85 to G-86, TM:
Chapter 3

Xqpsnpfltk, W-108

y

YCOR, G-85 to G-86, TM:
Chapter 3

Terrapin Logo Tutorial

Index

z

Zero vs. letter 0, G-18

1-11

	The Terrapin Logo Language for the Apple II Tutorial
	Important - Please Read
	Imortant Printing Information
	Disclaimer of all Warranties and Liability
	Contents
	Beginning in Logo
	Graphics
	Computation: Handling Numbers
	Words & Lists
	Music
	Appendix
	Index

